A numerical algorithm for zero counting. III: Randomization and condition
In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability m...
Guardado en:
Autores principales: | Cucker, F., Krick, T., Malajovich, G., Wschebor, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01968858_v48_n1_p215_Cucker |
Aporte de: |
Ejemplares similares
-
A numerical algorithm for zero counting. III: Randomization and condition
Publicado: (2012) -
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
por: Cucker, F., et al. -
A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis
Publicado: (2009) -
Zero counting for a class of univariate Pfaffian functions
por: Jeronimo, Gabriela Tali, et al.
Publicado: (2016) -
Zero counting for a class of univariate Pfaffian functions
por: Barbagallo, M.L., et al.