Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights
Let (X, d, μ) be an Ahlfors metric measure space. We give sufficient conditions on a closed set F {subset double equals} X and on a real number β in such a way that d(x, F)β becomes a Muckenhoupt weight. We give also some illustrations to regularity of solutions of partial differential equations and...
Guardado en:
Autores principales: | Aimar, H., Carena, M., Durán, R., Toschi, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_02365294_v143_n1_p119_Aimar |
Aporte de: |
Ejemplares similares
-
Powers of Distances to Lower Dimensional Sets as Muckenhoupt Weights
Publicado: (2014) -
Weak-Type Boundedness of the Hardy–Littlewood Maximal Operator on Weighted Lorentz Spaces
por: Agora, Elona, et al.
Publicado: (2016) -
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
Publicado: (2014) -
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
por: Shmerkin, P. -
El operador maximal MΦ generalizado actuando sobre medidas
por: Bonazza, Julieta
Publicado: (2021)