The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
We analyze the behavior as p→∞ of the first eigenvalue of the p-Laplacian with mixed boundary conditions of Dirichlet-Robin type. We find a nontrivial limit that we associate to a variational principle involving L∞-norms. Moreover, we provide a geometrical characterization of the limit value as well...
Guardado en:
Autores principales: | Rossi, J.D., Saintier, N. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v119_n_p167_Rossi |
Aporte de: |
Ejemplares similares
-
The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015) -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, J.D., et al. -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2016) -
The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
por: Del Pezzo, L.M., et al. -
The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
por: Del Pezzo, Leandro M., et al.
Publicado: (2016)