Weak solutions for the derivative nonlinear Schrödinger equation
The initial value problem for the derivative nonlinear Schrödinger equation (DNLS) was studied. The existence of global weak solutions and smoothing effect for DNLS was demonstrated. Compactness was required to obtain the dispersive smoothing properties of the Schrödinger equation.
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0362546X_v49_n2_p149_Rial |
Aporte de: |
Sumario: | The initial value problem for the derivative nonlinear Schrödinger equation (DNLS) was studied. The existence of global weak solutions and smoothing effect for DNLS was demonstrated. Compactness was required to obtain the dispersive smoothing properties of the Schrödinger equation. |
---|