Truncating expansions in bi-orthogonal bases: What is preserved?
In this work, we test the survival of topological information of an attractor under the truncations of a bi-orthogonal decomposition. We generate synthetic patterns which evolve dynamically in a desired way, and investigate the number of modes which should be kept in a truncation in order to be able...
Guardado en:
Autores principales: | Krmpotić, D., Mindlin, G.B. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03759601_v236_n4_p301_Krmpotic |
Aporte de: |
Ejemplares similares
-
Truncating expansions in bi-orthogonal bases: What is preserved?
Publicado: (1997) -
Truncating expansions in bi-orthogonal bases: What is preserved?
Publicado: (1997) -
Time-frequency shift invariance of Gabor spaces generated by integer lattices
Publicado: (2019) -
Time-frequency shift invariance of Gabor spaces generated by integer lattices
por: Cabrelli, C., et al. -
Quaternionic (super) twistors extensions and general superspaces
por: Cirilo, Diego Julio
Publicado: (2017)