On intrinsic bounds in the Nullstellensatz
Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstell...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
Aporte de: |
id |
todo:paper_09381279_v8_n2_p125_Krick |
---|---|
record_format |
dspace |
spelling |
todo:paper_09381279_v8_n2_p125_Krick2023-10-03T15:48:46Z On intrinsic bounds in the Nullstellensatz Krick, T. Sabia, J. Solernó, P. Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials |
spellingShingle |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials Krick, T. Sabia, J. Solernó, P. On intrinsic bounds in the Nullstellensatz |
topic_facet |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials |
description |
Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones. |
format |
JOUR |
author |
Krick, T. Sabia, J. Solernó, P. |
author_facet |
Krick, T. Sabia, J. Solernó, P. |
author_sort |
Krick, T. |
title |
On intrinsic bounds in the Nullstellensatz |
title_short |
On intrinsic bounds in the Nullstellensatz |
title_full |
On intrinsic bounds in the Nullstellensatz |
title_fullStr |
On intrinsic bounds in the Nullstellensatz |
title_full_unstemmed |
On intrinsic bounds in the Nullstellensatz |
title_sort |
on intrinsic bounds in the nullstellensatz |
url |
http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
work_keys_str_mv |
AT krickt onintrinsicboundsinthenullstellensatz AT sabiaj onintrinsicboundsinthenullstellensatz AT solernop onintrinsicboundsinthenullstellensatz |
_version_ |
1807316641262862336 |