Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that...
Guardado en:
Autor principal: | |
---|---|
Formato: | INPR |
Lenguaje: | English |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto |
Aporte de: |
Sumario: | Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. |
---|