Photon creation in a spherical oscillating cavity
We study the photon creation inside a perfectly conducting, spherical oscillating cavity. The electromagnetic field inside the cavity is described by means of two scalar fields which satisfy Dirichlet and (generalized) Neumann boundary conditions. As a preliminary step, we analyze the dynamical Casi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v73_n6_p_Mazzitelli |
Aporte de: |
Sumario: | We study the photon creation inside a perfectly conducting, spherical oscillating cavity. The electromagnetic field inside the cavity is described by means of two scalar fields which satisfy Dirichlet and (generalized) Neumann boundary conditions. As a preliminary step, we analyze the dynamical Casimir effect for both scalar fields. We then consider the full electromagnetic case. The conservation of angular momentum of the electromagnetic field is also discussed, showing that photons inside the cavity are created in singlet states. © 2006 The American Physical Society. |
---|