Dynamics in asymmetric double-well condensates
The dynamics of Bose-Einstein condensates in asymmetric double wells is studied. We construct a two-mode model and analyze the properties of the corresponding phase-space diagram, showing in particular that the minimum of the phase-space portrait becomes shifted from the origin as a consequence of t...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v90_n4_p_Cataldo |
Aporte de: |
Sumario: | The dynamics of Bose-Einstein condensates in asymmetric double wells is studied. We construct a two-mode model and analyze the properties of the corresponding phase-space diagram, showing in particular that the minimum of the phase-space portrait becomes shifted from the origin as a consequence of the nonvanishing overlap between the ground and excited states from which the localized states are derived. We further incorporate effective interaction corrections in the set of two-mode model parameters. Such a formalism is applied to a recent experimentally explored system, which is confined by a toroidal trap with radial barriers forming an arbitrary angle between them. We confront the model results with Gross-Pitaevskii simulations for various angle values finding a very good agreement. We also analyze the accuracy of a previously employed simple model for moving barriers, exploring a possible improvement that could cover a wider range of trap asymmetries. © 2014 American Physical Society. |
---|