K-theory of cones of smooth varieties

Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the κ-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve, then we calculate K0(R) and K1(R), and prove that K-1(R) = H1 (C, 0(...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortiñas, G., Haesemeyer, C., Walker, M.E., Weibel, C.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10563911_v22_n1_p13_Cortinas
Aporte de:
Descripción
Sumario:Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the κ-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve, then we calculate K0(R) and K1(R), and prove that K-1(R) = H1 (C, 0(n)). The formula for K0(R) involves the Zariski cohomology of twisted Kähler differentials on the variety.