Optimal shift invariant spaces and their Parseval frame generators

Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {nor...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldroubi, A., Cabrelli, C., Hardin, D., Molter, U.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi
Aporte de:
id todo:paper_10635203_v23_n2_p273_Aldroubi
record_format dspace
spelling todo:paper_10635203_v23_n2_p273_Aldroubi2023-10-03T16:01:10Z Optimal shift invariant spaces and their Parseval frame generators Aldroubi, A. Cabrelli, C. Hardin, D. Molter, U. Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {norm of matrix}2, where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f1, ..., fm, which may be theoretical samples, or experimental data. © 2007 Elsevier Inc. All rights reserved. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {norm of matrix}2, where wis are positive weights, and Vn is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f1, ..., fm, which may be theoretical samples, or experimental data. © 2007 Elsevier Inc. All rights reserved.
format JOUR
author Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
spellingShingle Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
Optimal shift invariant spaces and their Parseval frame generators
author_facet Aldroubi, A.
Cabrelli, C.
Hardin, D.
Molter, U.
author_sort Aldroubi, A.
title Optimal shift invariant spaces and their Parseval frame generators
title_short Optimal shift invariant spaces and their Parseval frame generators
title_full Optimal shift invariant spaces and their Parseval frame generators
title_fullStr Optimal shift invariant spaces and their Parseval frame generators
title_full_unstemmed Optimal shift invariant spaces and their Parseval frame generators
title_sort optimal shift invariant spaces and their parseval frame generators
url http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi
work_keys_str_mv AT aldroubia optimalshiftinvariantspacesandtheirparsevalframegenerators
AT cabrellic optimalshiftinvariantspacesandtheirparsevalframegenerators
AT hardind optimalshiftinvariantspacesandtheirparsevalframegenerators
AT molteru optimalshiftinvariantspacesandtheirparsevalframegenerators
_version_ 1807316565834596352