An H-system for a revolution surface without boundary

We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depend...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., De Nápoli, P., Mariani, M.C.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
Aporte de:
Descripción
Sumario:We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al.