An H-system for a revolution surface without boundary
We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depend...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster |
Aporte de: |
id |
todo:paper_10853375_v2006_n_p_Amster |
---|---|
record_format |
dspace |
spelling |
todo:paper_10853375_v2006_n_p_Amster2023-10-03T16:04:16Z An H-system for a revolution surface without boundary Amster, P. De Nápoli, P. Mariani, M.C. We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:De Nápoli, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al. |
format |
JOUR |
author |
Amster, P. De Nápoli, P. Mariani, M.C. |
spellingShingle |
Amster, P. De Nápoli, P. Mariani, M.C. An H-system for a revolution surface without boundary |
author_facet |
Amster, P. De Nápoli, P. Mariani, M.C. |
author_sort |
Amster, P. |
title |
An H-system for a revolution surface without boundary |
title_short |
An H-system for a revolution surface without boundary |
title_full |
An H-system for a revolution surface without boundary |
title_fullStr |
An H-system for a revolution surface without boundary |
title_full_unstemmed |
An H-system for a revolution surface without boundary |
title_sort |
h-system for a revolution surface without boundary |
url |
http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster |
work_keys_str_mv |
AT amsterp anhsystemforarevolutionsurfacewithoutboundary AT denapolip anhsystemforarevolutionsurfacewithoutboundary AT marianimc anhsystemforarevolutionsurfacewithoutboundary AT amsterp hsystemforarevolutionsurfacewithoutboundary AT denapolip hsystemforarevolutionsurfacewithoutboundary AT marianimc hsystemforarevolutionsurfacewithoutboundary |
_version_ |
1807321113845301248 |