Homotopy invariance through small stabilizations
We associate an algebra (Formula presented.) to each bornological algebra (Formula presented.). Each symmetric ideal (Formula presented.) of the algebra (Formula presented.) of complex bounded sequences gives rise to an ideal (Formula presented.) of (Formula presented.). We show that all ideals aris...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_15122891_v10_n3_p459_Abadie |
Aporte de: |
Sumario: | We associate an algebra (Formula presented.) to each bornological algebra (Formula presented.). Each symmetric ideal (Formula presented.) of the algebra (Formula presented.) of complex bounded sequences gives rise to an ideal (Formula presented.) of (Formula presented.). We show that all ideals arise in this way when (Formula presented.) is the algebra of complex numbers. We prove that for suitable (Formula presented.) , Weibel’s (Formula presented.) -theory of (Formula presented.) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s (Formula presented.) -theory of (Formula presented.) to be an isomorphism is measured by cyclic homology. © 2013, Tbilisi Centre for Mathematical Sciences. |
---|