Sumario: | We study dissipative effects due to inertial forces acting on matter fields confined to accelerated boundaries in 1+1, 2+1, and 3+1 dimensions. These matter fields describe the internal degrees of freedom of "mirrors" and impose, on the surfaces where they are defined, boundary conditions on a fluctuating "vacuum" field. We construct different models, involving either scalar or Dirac matter fields coupled to a vacuum scalar field, and use effective action techniques to calculate the strength of dissipation. In the case of massless Dirac fields, the results could be used to describe the inertial forces on an accelerated graphene sheet. © 2010 The American Physical Society.
|