Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study
Quantum chemical calculations using density functional theory have been carried out to investigate the influence of aqueous solvation on the structure and bonding in [Fe(CN) 5 L] 3- with L an aliphatic amine (ammonia, methylamine, hydrazine, and ethylenediamine). Gas phase equilibrium geometries wer...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_16102940_v7_n7_p201_GonzalezLebrero |
Aporte de: |
id |
todo:paper_16102940_v7_n7_p201_GonzalezLebrero |
---|---|
record_format |
dspace |
spelling |
todo:paper_16102940_v7_n7_p201_GonzalezLebrero2023-10-03T16:27:55Z Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study Gonz ález-Lebrero, M.C. Turjanski, A.G. Olabe, J.A. Estrin, D.A. DFT Solvent effects Transition metal complexes aliphatic amine ammonia ethylenediamine ferric ferrocyanide hydrazine methylamine aqueous solution article calculation chemical binding chemical reaction chemical structure controlled study density electricity hydrogen bond mathematical computing methodology priority journal quantum chemistry solvation vacuum Quantum chemical calculations using density functional theory have been carried out to investigate the influence of aqueous solvation on the structure and bonding in [Fe(CN) 5 L] 3- with L an aliphatic amine (ammonia, methylamine, hydrazine, and ethylenediamine). Gas phase equilibrium geometries were fully optimized at the generalized gradient approximation (GGA) level. Solvent effects were modeled within the DFT methodology by using a discrete electrostatic representation of the water molecules in the first solvation shell. For the hydrazine and ethylenediamine complexes in vacuum we found two internal hydrogen bonds between the terminal amino group hydrogens and two equatorial cyanide ligands. However, considering the first solvation shell, an open structure in which the terminal amino group is solvated by water molecules becomes more stable in the ethylenediamine case. Metal-L dissociation energies were computed in vacuum, taking the first solvation shell into account. The results obtained were compared with experimental kinetic data in aqueous solution in order to assess the role of solvation in the reactivity of these complexes. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16102940_v7_n7_p201_GonzalezLebrero |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
DFT Solvent effects Transition metal complexes aliphatic amine ammonia ethylenediamine ferric ferrocyanide hydrazine methylamine aqueous solution article calculation chemical binding chemical reaction chemical structure controlled study density electricity hydrogen bond mathematical computing methodology priority journal quantum chemistry solvation vacuum |
spellingShingle |
DFT Solvent effects Transition metal complexes aliphatic amine ammonia ethylenediamine ferric ferrocyanide hydrazine methylamine aqueous solution article calculation chemical binding chemical reaction chemical structure controlled study density electricity hydrogen bond mathematical computing methodology priority journal quantum chemistry solvation vacuum Gonz ález-Lebrero, M.C. Turjanski, A.G. Olabe, J.A. Estrin, D.A. Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
topic_facet |
DFT Solvent effects Transition metal complexes aliphatic amine ammonia ethylenediamine ferric ferrocyanide hydrazine methylamine aqueous solution article calculation chemical binding chemical reaction chemical structure controlled study density electricity hydrogen bond mathematical computing methodology priority journal quantum chemistry solvation vacuum |
description |
Quantum chemical calculations using density functional theory have been carried out to investigate the influence of aqueous solvation on the structure and bonding in [Fe(CN) 5 L] 3- with L an aliphatic amine (ammonia, methylamine, hydrazine, and ethylenediamine). Gas phase equilibrium geometries were fully optimized at the generalized gradient approximation (GGA) level. Solvent effects were modeled within the DFT methodology by using a discrete electrostatic representation of the water molecules in the first solvation shell. For the hydrazine and ethylenediamine complexes in vacuum we found two internal hydrogen bonds between the terminal amino group hydrogens and two equatorial cyanide ligands. However, considering the first solvation shell, an open structure in which the terminal amino group is solvated by water molecules becomes more stable in the ethylenediamine case. Metal-L dissociation energies were computed in vacuum, taking the first solvation shell into account. The results obtained were compared with experimental kinetic data in aqueous solution in order to assess the role of solvation in the reactivity of these complexes. |
format |
JOUR |
author |
Gonz ález-Lebrero, M.C. Turjanski, A.G. Olabe, J.A. Estrin, D.A. |
author_facet |
Gonz ález-Lebrero, M.C. Turjanski, A.G. Olabe, J.A. Estrin, D.A. |
author_sort |
Gonz ález-Lebrero, M.C. |
title |
Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
title_short |
Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
title_full |
Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
title_fullStr |
Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
title_full_unstemmed |
Structure, solvation, and bonding in pentacyano(L) ferrate (II) ions (L=aliphatic amine): A density functional study |
title_sort |
structure, solvation, and bonding in pentacyano(l) ferrate (ii) ions (l=aliphatic amine): a density functional study |
url |
http://hdl.handle.net/20.500.12110/paper_16102940_v7_n7_p201_GonzalezLebrero |
work_keys_str_mv |
AT gonzalezlebreromc structuresolvationandbondinginpentacyanolferrateiiionslaliphaticamineadensityfunctionalstudy AT turjanskiag structuresolvationandbondinginpentacyanolferrateiiionslaliphaticamineadensityfunctionalstudy AT olabeja structuresolvationandbondinginpentacyanolferrateiiionslaliphaticamineadensityfunctionalstudy AT estrinda structuresolvationandbondinginpentacyanolferrateiiionslaliphaticamineadensityfunctionalstudy |
_version_ |
1807320737576386560 |