Frames of exponentials and sub-multitiles in LCA groups
In this note, we investigate the existence of frames of exponentials for L2(Ω) in the setting of LCA groups. Our main result shows that sub-multitiling properties of Ω⊂Gˆ with respect to a uniform lattice Γ of Gˆ guarantee the existence of a frame of exponentials with frequencies in a finite number...
Autores principales: | , , , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_1631073X_v356_n1_p107_Barbieri |
Aporte de: |
id |
todo:paper_1631073X_v356_n1_p107_Barbieri |
---|---|
record_format |
dspace |
spelling |
todo:paper_1631073X_v356_n1_p107_Barbieri2023-10-03T16:28:36Z Frames of exponentials and sub-multitiles in LCA groups Barbieri, D. Cabrelli, C. Hernández, E. Luthy, P. Molter, U. Mosquera, C. In this note, we investigate the existence of frames of exponentials for L2(Ω) in the setting of LCA groups. Our main result shows that sub-multitiling properties of Ω⊂Gˆ with respect to a uniform lattice Γ of Gˆ guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of Γ. We also prove the converse of this result and provide conditions for the existence of these frames. These conditions extend recent results on Riesz bases of exponentials and multitilings to frames. © 2017 Académie des sciences JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1631073X_v356_n1_p107_Barbieri |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In this note, we investigate the existence of frames of exponentials for L2(Ω) in the setting of LCA groups. Our main result shows that sub-multitiling properties of Ω⊂Gˆ with respect to a uniform lattice Γ of Gˆ guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of Γ. We also prove the converse of this result and provide conditions for the existence of these frames. These conditions extend recent results on Riesz bases of exponentials and multitilings to frames. © 2017 Académie des sciences |
format |
JOUR |
author |
Barbieri, D. Cabrelli, C. Hernández, E. Luthy, P. Molter, U. Mosquera, C. |
spellingShingle |
Barbieri, D. Cabrelli, C. Hernández, E. Luthy, P. Molter, U. Mosquera, C. Frames of exponentials and sub-multitiles in LCA groups |
author_facet |
Barbieri, D. Cabrelli, C. Hernández, E. Luthy, P. Molter, U. Mosquera, C. |
author_sort |
Barbieri, D. |
title |
Frames of exponentials and sub-multitiles in LCA groups |
title_short |
Frames of exponentials and sub-multitiles in LCA groups |
title_full |
Frames of exponentials and sub-multitiles in LCA groups |
title_fullStr |
Frames of exponentials and sub-multitiles in LCA groups |
title_full_unstemmed |
Frames of exponentials and sub-multitiles in LCA groups |
title_sort |
frames of exponentials and sub-multitiles in lca groups |
url |
http://hdl.handle.net/20.500.12110/paper_1631073X_v356_n1_p107_Barbieri |
work_keys_str_mv |
AT barbierid framesofexponentialsandsubmultitilesinlcagroups AT cabrellic framesofexponentialsandsubmultitilesinlcagroups AT hernandeze framesofexponentialsandsubmultitilesinlcagroups AT luthyp framesofexponentialsandsubmultitilesinlcagroups AT molteru framesofexponentialsandsubmultitilesinlcagroups AT mosquerac framesofexponentialsandsubmultitilesinlcagroups |
_version_ |
1807319256265654272 |