An A∞ Operad in Spineless Cacti

The dg operad C of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjec...

Descripción completa

Detalles Bibliográficos
Autores principales: Gálvez-Carrillo, I., Lombardi, L., Tonks, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_16605446_v12_n4_p1215_GalvezCarrillo
Aporte de:
id todo:paper_16605446_v12_n4_p1215_GalvezCarrillo
record_format dspace
spelling todo:paper_16605446_v12_n4_p1215_GalvezCarrillo2023-10-03T16:28:39Z An A∞ Operad in Spineless Cacti Gálvez-Carrillo, I. Lombardi, L. Tonks, A. The dg operad C of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjection operad of Berger and Fresse (Math Proc Camb Philos Soc 137(1):135–174, 2004), McClure and Smith (Recent progress in homotopy theory (Baltimore, MD, 2000). Contemp Math., Amer. Math. Soc., Providence 293:153–193, 2002) and McClure and Smith (J Am Math Soc 16(3):681–704, 2003). Its homology is the Gerstenhaber dg operad G. We construct a map of dg operads ψ: A∞ ⟶ C such that ψ(m2) is commutative and H∗(ψ) is the canonical map A → Com → G. This formalises the idea that, since the cup product is commutative in homology, its symmetrisation is a homotopy associative operation. Our explicit A∞ structure does not vanish on non-trivial shuffles in higher degrees, so does not give a map Com∞ → C. If such a map could be written down explicitly, it would immediately lead to a G∞ structure on C and on Hochschild cochains, that is, to an explicit and direct proof of the Deligne conjecture. © 2015, Springer Basel. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_16605446_v12_n4_p1215_GalvezCarrillo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description The dg operad C of cellular chains on the operad of spineless cacti of Kaufmann (Topology 46(1):39–88, 2007) is isomorphic to the Gerstenhaber–Voronov dg operad codifying the cup product and brace operations on the Hochschild cochains of an associative algebra, and to the suboperad F2X of the surjection operad of Berger and Fresse (Math Proc Camb Philos Soc 137(1):135–174, 2004), McClure and Smith (Recent progress in homotopy theory (Baltimore, MD, 2000). Contemp Math., Amer. Math. Soc., Providence 293:153–193, 2002) and McClure and Smith (J Am Math Soc 16(3):681–704, 2003). Its homology is the Gerstenhaber dg operad G. We construct a map of dg operads ψ: A∞ ⟶ C such that ψ(m2) is commutative and H∗(ψ) is the canonical map A → Com → G. This formalises the idea that, since the cup product is commutative in homology, its symmetrisation is a homotopy associative operation. Our explicit A∞ structure does not vanish on non-trivial shuffles in higher degrees, so does not give a map Com∞ → C. If such a map could be written down explicitly, it would immediately lead to a G∞ structure on C and on Hochschild cochains, that is, to an explicit and direct proof of the Deligne conjecture. © 2015, Springer Basel.
format JOUR
author Gálvez-Carrillo, I.
Lombardi, L.
Tonks, A.
spellingShingle Gálvez-Carrillo, I.
Lombardi, L.
Tonks, A.
An A∞ Operad in Spineless Cacti
author_facet Gálvez-Carrillo, I.
Lombardi, L.
Tonks, A.
author_sort Gálvez-Carrillo, I.
title An A∞ Operad in Spineless Cacti
title_short An A∞ Operad in Spineless Cacti
title_full An A∞ Operad in Spineless Cacti
title_fullStr An A∞ Operad in Spineless Cacti
title_full_unstemmed An A∞ Operad in Spineless Cacti
title_sort a∞ operad in spineless cacti
url http://hdl.handle.net/20.500.12110/paper_16605446_v12_n4_p1215_GalvezCarrillo
work_keys_str_mv AT galvezcarrilloi anaoperadinspinelesscacti
AT lombardil anaoperadinspinelesscacti
AT tonksa anaoperadinspinelesscacti
AT galvezcarrilloi aoperadinspinelesscacti
AT lombardil aoperadinspinelesscacti
AT tonksa aoperadinspinelesscacti
_version_ 1807318627893903360