An algebraic characterization of simple closed curves on surfaces with boundary
We prove that a conjugacy class in the fundamental group of a surface with boundary is represented by a power of a simple curve if and only if the Goldman bracket of two different powers of this class, one of them larger than two, is zero. The main theorem actually counts self-intersection number of...
Guardado en:
Autores principales: | Chas, M., Krongold, F. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_17935253_v2_n3_p395_Chas |
Aporte de: |
Ejemplares similares
-
An algebraic characterization of simple closed curves on surfaces with boundary
por: Chas, Moira, et al.
Publicado: (2010) -
Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II : Unipotent classes in symplectic groups
por: Andruskiewitsch, Nicolás, et al.
Publicado: (2016) -
Finite-Dimensional Pointed Hopf Algebras Over Finite Simple Groups of Lie Type IV : Unipotent Classes in Chevalley and Steinberg Groups
por: Andruskiewitsch, Nicolás, et al.
Publicado: (2020) -
Enumeration of surfaces containing an elliptic quartic curve
Publicado: (2014) -
Enumeration of surfaces containing an elliptic quartic curve
por: Cukierman, F., et al.