Optimal robust estimates using the Hellinger distance

Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marazzi, A., Yohai, V.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_18625347_v4_n2_p169_Marazzi
Aporte de:
Descripción
Sumario:Optimal robust M-estimates of a multidimensional parameter are described using Hampel's infinitesimal approach. The optimal estimates are derived by minimizing a measure of efficiency under the model, subject to a bounded measure of infinitesimal robustness. To this purpose we define measures of efficiency and infinitesimal sensitivity based on the Hellinger distance. We show that these two measures coincide with similar ones defined by Yohai using the Kullback-Leibler divergence, and therefore the corresponding optimal estimates coincide too. We also give an example where we fit a negative binomial distribution to a real dataset of "days of stay in hospital" using the optimal robust estimates. © 2010 Springer-Verlag.