Sumario: | En el presente trabajo se estudian tres problemas inherentesa teorias de campo. En el primero se demuestra la unicidad del tensor demomento-energía para la teoria de Einstein-Maxwell, mediante lassiguientes hipótesis, naturales y mínimas: Toda vez que se anule la divergencia covariante del tensor decampo electromagnético, debe anularse la correspondiente al tensorde momento-energía. El tensor de momento-energía hallado coincide con el queusualmente se emplea en la teorías de Einstein-Maxwell. En el segundo trabajo, mediante un enfoque por conexionessimétricas, en el marco de la teoría de gauge de Einstein-Yang-Mills, se resuelve el problema equivariante inversodel cálculo de variaciones. Se demuestra, para un lagrangianoarbitrario L, que si las ecuaciones de campo son tensoriales einvariantes de gauge, y si el operador de Euler-Lagrange asociadoa la conexión es adecuadamente degenerado (sus componentes sólodependen de las de la métrica, de su derivada y de las de laconexión), entonces existe una densidad lagrangiana L~, invariantede gauge, equivalente a L. en el sentido que sendas expresiones de Euler-Lagrange coinciden. La verificación de las ecuaciones decampo en el vacio implica que la conexión simétrica arbitrariautilizada, coincide con la conexión de Levi-Civita. En el último se demuestra -en el mismo marco teórito y con elmismo enfoque que en el trabajo anterior- que dada una densidadescalar lagrangiana e invariante de gauge L~ (cuya existencia estáasegurada por el trabajo anterior), y con idénticas hipótesis dedegeneración, entonces L~ es única y se exhibe su forma general,para un grupo de Lie arbitrario G.
|