Well logging for earth scientists /

Guardado en:
Detalles Bibliográficos
Autor principal: Ellis, Darwin V.
Otros Autores: Singer, Julian M.
Formato: Desconocido
Lenguaje:Español
Publicado: Berlin : Springer, 2008.
Edición:2nd ed.; repr.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 093960000a22003010004500
003 WAA
005 20211211103938.0
006 a||||fr|||| 001 0
007 ta
008 t ag-|||||r|||| 001 0 spa d
020 |a 9789048169474 
040 |c WAA  |a WAA 
041 |a spa 
100 1 |a Ellis, Darwin V.  |9 15348 
245 1 0 |a Well logging for earth scientists /   |c Darwin V. Ellis y Julian M. Singer 
250 |a 2nd ed.; repr. 
260 |a Berlin :   |b Springer,   |c 2008. 
300 |a 692 p. :   |b tbls.; grafs. ;   |c 23 cm. 
500 |a Incluye Íindice analítico. 
500 |a Solutions to end-of-chapter problems (p. 694). 
505 |a An Overviewof Well Logging -- Introduction -- What is Logging? -- What is Wireline Logging? -- What is LWD? -- Properties of Reservoir Rocks -- Well Logging:The Narrow View -- Measurement Techniques -- How is Logging Viewed by Others? -- Well Log Interpretation:Finding the Hydrocarbon --Rudimentary Interpretation Principles -- The Borehole Environment -- Reading a Log -- Examples of Curve Behavior and Log Display -- A Sample Rapid Interpretation -- Basic Resistivity and Spontaneous Potential -- The Concep to Bulk Resistivity -- Electrical Properties of Rocks and Brines -- Spontaneous Potential -- Log Example of the SP56 -- Empiricism: The Cornerstone of Interpretation -- Early Electric Log Interpretation -- Empirical Approaches to Interpretation -- Formation Factor -- Archie’s Synthesis -- A Note of Caution -- The Porosity Exponent ,m -- The Saturation Exponent,n -- Effect of Clay -- Alternative Models -- A Review of Electrostatics -- A Thought Experiment for a Logging Application -- Anisotropy -- Resistivity: Electrode Devices and How They Evolved -- Unfocused Devices -- The Short Norma -- Estimating the Borehole Size Effect -- Focused Devices -- Laterolog Principle -- Spherical Focusing --The Dual Laterolog -- Dual Laterolog Example -- Further Developments -- Reference Electrodes -- Thin Bedsand Invasion -- Array Tools -- Other Electrode and Toroid Devices -- Microelectrode Devices -- Uses for Rxo -- Azimutha lMeasurements -- Resistivity Measurements While Drilling -- Resistivity at the Bit -- Ringand Button Measurements -- Azimuthal Measurements -- Cased-Hole Resistivity Measurements -- Resistivity: Induction Devices -- Review of Magnetostatics and Induction -- Magnetic Field from a Current Loop -- Vertical Magnetic Fieldfrom a Small Current Loop -- Voltage Inducedina Coilby a Magnetic Field -- The Two-CoilInduction Device -- Geometric Factor for the Two-coil Sonde -- Focusing the Two-coil Sonde -- Skin Effect -- Two-Coil Sonde with Skin Effect -- Multicoil Induction Devices -- Inductionor Electrode? -- Induction Log Example -- Multi-Arrayand Triaxial Induction Devices -- Phasor Induction --Inverse Filtering -- High Resolution Induction -- Multi-Array Inductions -- Multi-Array Devices -- Multi-Array Processing -- Limitations of Resolution Enhancement -- Radial and 2D Inversion -- Dipping Beds -- Multicomponent Induction Tools and Anisotropy -- Response of Coplanar Coils -- Multicomponent Devices -- Propagation Measurements -- Characterizing Dielectrics -- Microscopic Properties -- Interfacial Polarization and the Dielectric Properties of Rocks -- Propagation in Conductive Dielectric Materials -- Dielectric Mixing Laws -- The Measurement of Formation Dielectric Properties -- MHz Measurements -- Derivation of the Field Logs -- General Environmental Factors -- Vertica land Radial Response -- Dip and Anisotropy --Array Propagation Measurements and their Interpretation -- Basic Nuclear Physics for Logging Applications: Gamma Rays -- Nuclear Radiation -- Radioactive Decay and Statistics -- Radiation Interactions -- Fundamentals of Gamma Ray Interactions -- Attenuation of Gamma Rays -- Gamma Ray Detectors -- Gas-Discharge Counters -- Scintillation Detectors -- Semiconductor Detectors -- Gamma Ray Devices -- Sources of Natural Radioactivity -- Gamma Ray Devices -- Uses of the Gamma Ray Measurement -- Spectral Gamma Ray Logging -- Spectral Stripping -- Developments in Spectral Gamma Ray Logging -- A Note on Depthof Investigation -- Gamma Ray Scattering and Absorption Measurements -- Density and Gamma Ray Attenuation -- Density Measurement Technique -- Density Compensation -- Lithology Logging -- Photoelectric Absorption and Lithology -- Pe Measurement Technique -- Interpretation of Pe -- Inversion of Forward Models with Multidetector Tools -- LWD Density Devices -- Environmental Effects -- Estimating Porosity from Density Measurements -- Interpretation Parameters -- Basic Neutron Physics for Logging Applications -- Fundamental Neutron Interactions -- Nuclear Reactions and Neutron Sources -- Use ful Bulk Parameters -- Macroscopic Cross Sections -- Lethargy and Average Energy Loss -- Number of Collisions to Slow Down -- Characteristic Lengths -- Characteristic Times -- Neutron Detectors -- Neutron Porosity Devices -- Use of Neutron Porosity Devices -- Types of Neutron Tools -- Basis of Measurement -- Historical Measurement Technique -- A Generic Thermal Neutron Tool -- Typical Log Presentation -- Environmental Effects -- Introduction to Correction Charts -- Major Perturbations of Neutron Porosity -- Lithology Effec -- Shale Effect -- Gas Effect -- Depthof Investigation -- LWD Neutron Porosity Devices -- Pulsed Neutron Devices and Spectroscopy -- Thermal NeutronDie-Away Logging -- Thermal Neutron Capture -- Measurement Technique -- Instrumentation -- Interpretation -- Pulsed Neutron Spectroscopy -- Evolution of Measurement Technique -- Pulsed Neutron Porosity -- Spectroscopy -- Nuclear Magnetic Logging -- Nuclear Resonance Magnetometers -- Why Nuclear Magnetic Logging? -- A Look at Magnetic Gyroscopes -- The Precession of Atomic Magnets -- Paramagnetism of Bulk Materials -- Some Details of Nuclear Induction -- Longitudinal Relaxation,T -- Rotating Frame -- Pulsing -- Transverse Relaxation,T2, and Spin Dephasing -- Spin Echoes -- Relaxation and Diffusion in Magnetic Gradients -- Measurement Sensitivity -- NMR Properties of Bulk Fluids -- Hydrogen Index -- Bulk Relaxation in Water and Hydrocarbons -- Viscosity Correlations for Crude Oils -- NMR Relaxation in Porous Media -- Surface Interactions -- Pore Size Distribution -- Diffusion Restriction -- Internal Magnetic Gradients -- Operation of a First Generation Nuclear Magnetic Logging Tool -- The NMR Renaissance of “Inside-Out” Devices -- A New Approach -- Numar/Halliburton MRIL -- Schlumberger CM Rand Subsequent Developments -- LWD Devices -- Applications and Log Examples -- Tool Planners -- Porosity and Free-Fluid Porosity -- Pore Size Distribution and Permeability Estimation -- Fluid Typing -- AppendixA: Diffusion -- Introduction to Acoustic Logging -- Short History of Acoustic Measurements in Boreholes -- Applications of Borehole Acoustic Logging -- Review of Elastic Properties -- Wave Propagation -- Rudimentary Acoustic Logging -- Rudimentary Acoustic Interpretation -- Acoustic Waves in Porous Rocks and Boreholes -- A Review of Laboratory Measurements -- Porolelastic Models of Rocks -- The Promise of Vp/Vs -- Lithology -- Gas Detection and Quantification -- Mechanical Properties -- Seismic Applications (AVO) -- Acoustic Waves in Boreholes -- Borehole Flexural Waves -- Stoneley Waves -- Acoustic Logging Methods -- Transducers–Transmitters and Receivers -- Traditional Sonic Logging -- Some Typical Problems -- Long Spacing Sonic -- Evolution of Acoustic Devices -- Arrays of Detectors -- Dipole Tools -- Shear Wave Anisotropy and Crossed Dipole Tools LWD -- Modeling-driven Tool Design -- Acoustic Logging Applications -- Formation Fluid Pressure -- Mechanical Properties and Fractures -- Permeability -- Cement Bond Log -- Ultrasonic Devices -- Pulse-EchoImaging -- Cement Evaluation -- High Angle and Horizontal Wells -- Why are HA/HZ Wells Different? -- Measurement Response -- Resistivity -- Density -- Neutron -- Other Measurements -- Geosteering -- Deep Reading Devices for Geosteering -- Clay Quantification -- What is Clay/Shale? -- Physical Properties of Clays -- Total Porosity and Effective Porosity -- Shale Distribution -- Influence on Logging Measurements -- Shale Determination from Single Measurements -- Interpretation of Pein Shaly Sands -- Neutron Response to Shale -- ResponseoftoClayMinerals61621.4Neutron–Density Plots -- Elemental Analysis -- Clay Typing -- Lithology and Porosity Estimation -- Graphical Approach for Binary Mixtures -- Combining Three Porosity Logs -- Lithology Logging: Incorporating Pe -- Other Methods -- Numerical Approaches to Lithology Determination -- Quantitative Evaluation -- General Evaluation Methods -- Saturation and Permeability Estimation -- Clean Formations -- Shaly Formations -- Early Models -- Double Layer Models -- Saturation Equations -- Laminated Sands -- Carbonates and Heterogeneous Rocks -- Permeability from Logs -- Resistivity and Porosity -- Petrophysical Models. 
650 0 |a Geología  |9 1052 
650 0 |a Geofísica  |9 1051 
700 |9 15349  |a Singer, Julian M. 
942 |2 CDU  |c LIBRO 
999 |c 4890  |d 4890 
952 |0 0  |1 0  |2 CDU  |4 0  |6 550_300000000000000_EL92  |7 0  |9 10961  |a 04  |b 04  |d 2018-04-04  |l 0  |o 550.3 El92  |p 32-01621  |r 2018-04-04  |w 2018-04-04  |y LIBRO NPP 
952 |0 0  |1 0  |2 CDU  |4 0  |6 550_300000000000000_EL92  |7 0  |9 10962  |a 04  |b 04  |c CART  |d 2018-04-04  |l 1  |m 1  |o 550.3 El92  |p 32-01651  |r 2025-08-20  |s 2025-08-05  |w 2018-04-04  |y LIBRO