|
|
|
|
| LEADER |
073550000a22003130004500 |
| 003 |
WAA |
| 005 |
20220512100158.0 |
| 006 |
a||||fr|||| 001 0 |
| 007 |
ta |
| 008 |
t ag-|||||r|||| 001 0 spa d |
| 020 |
|
|
|a 9780521666244
|
| 040 |
|
|
|c WAA
|a WAA
|
| 041 |
|
|
|a spa
|
| 100 |
1 |
|
|a Turcotte, Donald L.
|9 16723
|
| 245 |
1 |
0 |
|a Geodynamics /
|c Donald L. Turcotte and Gerald Schubert
|
| 250 |
|
|
|a 2nd ed.
|
| 260 |
|
|
|a Cambridge :
|b Cambridge university press,
|c 2010.
|
| 300 |
|
|
|a 456 p. :
|b grafs. ;
|c 25 cm.
|
| 500 |
|
|
|a Incluye índice analítico
|
| 505 |
|
|
|a 1. Plate Tectonics. 1.1. Introduction -- 1.2. The Lithosphere -- 1.3. Accreting Plate Boundaries -- 1.4. Subduction -- 1.5. Transform Faults -- 1.6. Hotspots and Mantle Plumes -- 1.7. Continents -- 1.8. Paleomagnetism and the Motion of the Plates -- 1.9. Triple Junctions -- 1.10. The Wilson Cycle -- 1.11. Continental Collisions -- 1.12. Volcanism and Heat Flow -- 1.13. Seismicity and the State of Stress in the Lithosphere -- 1.14. The Driving Mechanism -- 1.15. Comparative Planetology -- 1.16. The Moon -- 1.17. Mercury -- 1.18. Mars -- 1.19. Phobos and Deimos -- 1.20. Venus -- 1.21. The Galilean Satellites -- 2. Stress and Strain in Solids. 2.1. Introduction -- 2.2. Body Forces and Surface Forces -- 2.3. Stress in Two Dimensions -- 2.4. Stress in Three Dimensions -- 2.5. Pressures in the Deep Interiors of Planets -- 2.6. Stress Measurement -- 2.7. Basic Ideas about Strain -- 2.8. Strain Measurements – 3. Elasticity and Flexure. 3.1. Introduction -- 3.2. Linear Elasticity -- 3.3. Uniaxial Stress -- 3.4. Uniaxial Strain -- 3.5. Plane Stress -- 3.6. Plane Strain -- 3.7. Pure Shear and Simple Shear -- 3.8. Isotropic Stress -- 3.9. Two-Dimensional Bending or Flexure of Plates -- 3.10. Bending of Plates under Applied Moments and Vertical Loads -- 3.11. Buckling of a Plate under a Horizontal Load -- 3.12. Deformation of Strata Overlying an Igneous Intrusion -- 3.13. Application to the Earth’s Lithosphere -- 3.14. Periodic Loading -- 3.15. Stability of the Earth’s Lithosphere Under an End Load -- 3.16. Bending of the Elastic Lithosphere under the Loads of Island Chains -- 3.17. Bending of the Elastic Lithosphere at an Ocean Trench -- 3.18. Flexure and the Structure of Sedimentary Basins – 4. Heat Transfer. 4.1. Introduction -- 4.2. Fourier’s Law of Heat Conduction -- 4.3. Measuring the Earth’s Surface Heat Flux -- 4.4. The Earth’s Surface Heat Flow -- 4.5. Heat Generation by the Decay of Radioactive Elements -- 4.6. One-Dimensional Steady Heat Conduction -- 4.7. A Conduction Temperature Profile for the Mantle -- 4.8. Continental Geotherms -- 4.9. Radial Heat Conduction in a Sphere or Spherical Shell -- 4.10. Temperatures in the Moon -- 4.11. Steady Two- and Three-Dimensional Heat Conduction -- 4.12. Subsurface Temperature -- 4.13. One-Dimensional, Time-Dependent Heat Conduction -- 4.14. Periodic Heating of a Semi-Infinite Half-Space -- 4.15. Instantaneous Heating or Cooling of a Semi-Infinite Half-Space -- 4.16. Cooling of the Oceanic Lithosphere -- 4.17. Plate Cooling Model of the Lithosphere -- 4.18. The Stefan Problem -- 4.19. Solidification of a Dike or Sill -- 4.20. The Heat Conduction Equation in a Moving Medium -- 4.21. One-Dimensional, Unsteady Heat Conduction in an Infinite Region -- 4.22. Thermal Stresses -- 4.23. Ocean Floor Topography -- 4.24. Changes in Sea Level -- 4.25. Thermal and Subsidence History of Sedimentary Basins -- 4.26. Heating or Cooling a Semi-Infinite Half-Space -- 4.27. Frictional Heating on Faults -- 4.28. Mantle Geotherms and Adiabats -- 4.29. Thermal Structure of the Subducted Lithosphere -- 4.30. Culling Model for the Erosion and Deposition of Sediments – 5. Gravity. 5.1. Introduction -- 5.2. Gravitational Acceleration -- 5.3. Centrifugal Acceleration and the Acceleration of Gravity -- 5.4. The Gravitational Potential and the Geoid -- 5.5. Moments of Inertia -- 5.6. Surface Gravity Anomalies -- 5.7. Bouguer Gravity Formula -- 5.8. Reductions of Gravity Data -- 5.9. Compensation -- 5.10. The Gravity Field of a Periodic Mass Distribution on a Surface -- 5.11. Compensation Due to Lithospheric Flexure -- 5.12. Isostatic Geoid Anomalies -- 5.13. Compensation Models and Observed Geoid Anomalies -- 5.14. Forces Required to Maintain Topography and the Geoid -- 6. Fluid Mechanics. 6.1. Introduction -- 6.2. One-Dimensional Channel Flows -- 6.3. Asthenospheric Counterflow -- 6.4. Pipe Flow -- 6.5. Artesian Aquifer Flows -- 6.6. Flow Through Volcanic Pipes -- 6.7. Conservation of Fluid in Two Dimensions -- 6.8. Elemental Force Balance in Two Dimensions -- 6.9. The Stream Function -- 6.10. Postglacial Rebound -- 6.11. Angle of Subduction -- 6.12. Diapirism -- 6.13. Folding -- 6.14. Stokes Flow -- 6.15. Plume Heads and Tails -- 6.16. Pipe Flow with Heat Addition -- 6.17. Aquifer Model for Hot Springs -- 6.18. Thermal Convection -- 6.19. Linear Stability Analysis for the Onset of Thermal Convection -- 6.20. A Transient Boundary-Layer Theory -- 6.21. A Steady-State Boundary-Layer Theory -- 6.22. The Forces that Drive Plate Tectonics -- 6.23. Heating by Viscous Dissipation -- 6.24. Mantle Recycling and Mixing -- 7. Rock rheology. 7.1. Introduction -- 7.2. Elasticity -- 7.3. Diffusion Creep -- 7.4. Dislocation Creep -- 7.5. Shear Flows of Fluids -- 7.6. Mantle Rheology -- 7.7. Rheological Effects on Mantle Convection -- 7.8. Mantle Convection and the Cooling of the Earth -- 7.9. Crustal Rheology -- 7.10. Viscoelasticity -- 7.11. Elastic–Perfectly Plastic Behavior -- 8. Faulting. 8.1. Introduction -- 8.2. Classification of Faults -- 8.3. Friction on Faults -- 8.4. Anderson Theory of Faulting -- 8.5. Strength Envelope -- 8.6. Thrust Sheets and Gravity Sliding -- 8.7. Earthquakes -- 8.8. San Andreas Fault -- 8.9. North Anatolian Fault -- 8.10. Some Elastic Solutions for Strike–Slip Faulting -- 8.11. Stress Diffusion -- 8.12. Thermally Activated Creep on Faults -- 9. Flows in Porous Media. 9.1. Introduction -- 9.2. Darcy’s Law -- 9.3. Permeability Models -- 9.4. Flow in Confined Aquifers -- 9.5 Flow in Unconfined Aquifers -- 9.6. Geometrical Form of Volcanoes -- 9.7. Equations of Conservation of Mass, Momentum, and Energy for Flow in Porous Media -- 9.8. One-Dimensional Advection of Heat in a Porous Medium -- 9.9. Thermal Convection in a Porous Layer -- 9.10. Thermal Plumes in Fluid-Saturated Porous Media -- 9.11. Porous Flow Model for Magma Migration -- 9.12. Two-Phase Convection -- 10. Chemical Geodynamics. 10.1. Introduction -- 10.2. Radioactivity and Geochronology -- 10.3. Geochemical Reservoirs -- 10.4 A Two-Reservoir Model with Instantaneous Crustal Differentiation -- 10.5. Noble Gas Systems -- 10.6. Isotope Systematics of OIB -- Appendix A. Symbols and Units -- Appendix B. Physical Constants and Properties.
|
| 650 |
|
0 |
|a Geología
|9 1052
|
| 650 |
|
0 |
|a Geodinámica
|9 1050
|
| 650 |
|
0 |
|a Tectónica
|9 10991
|
| 650 |
|
0 |
|a Vulcanología
|9 15319
|
| 700 |
1 |
|
|a Schubert, Gerald
|9 16724
|
| 942 |
|
|
|2 CDU
|c LIBRO
|
| 999 |
|
|
|c 5007
|d 5007
|
| 952 |
|
|
|0 0
|1 0
|2 CDU
|4 0
|6 551_200000000000000_T843
|7 0
|9 15746
|a 04
|b 04
|d 2018-09-24
|l 0
|o 551.2 T843
|p 32-01809
|r 2018-09-24
|w 2018-09-24
|y LIBRO NPP
|
| 952 |
|
|
|0 0
|1 0
|2 CDU
|4 0
|6 551_200000000000000_T843
|7 0
|9 15747
|a 04
|b 04
|c CART
|d 2018-09-24
|l 1
|o 551.2 T843
|p 32-01934
|r 2023-08-14
|s 2023-08-09
|w 2018-09-24
|y LIBRO
|