Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community

Agricultural intensification has increased food production by reducing crop diversity and increasing fertilization and crop protection. Unfortunately, intensification has also reduced soil ecosystem services. Diversifying crop rotations could be a feasible alternative to promote positive feedbacks b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: D'Acunto, Luciana, Andrade, José Francisco, Poggio, Santiago Luis, Semmartin, María
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2018dacunto.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04909nab a22003977a 4500
001 20180809165241.0
003 AR-BaUFA
005 20240219134111.0
008 180809t2018 ne ||||| |||| 00| 0 eng d
999 |c 45813  |d 45813 
999 |d 45813 
999 |d 45813 
999 |d 45813 
999 |d 45813 
999 |d 45813 
022 |a 0167-8809 
024 |a 10.1016/j.agee.2018.02.011 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community 
520 |a Agricultural intensification has increased food production by reducing crop diversity and increasing fertilization and crop protection. Unfortunately, intensification has also reduced soil ecosystem services. Diversifying crop rotations could be a feasible alternative to promote positive feedbacks between soil biota and soil properties. Here, we investigated the impact of diversifying crop rotations on functional composition and diversity of the heterotrophic soil bacterial communities. We studied three frequent rotations with a total number of crops ranging from two to four. Before the experiment, all plots were cultivated with soybean. In the first experimental year, the crop sequences were (1) fallow-soybean, (2) barley/soybean, and (3) field pea/maize. In the second year, all plots were subjected to a wheat-soybean double crop. The experiment was replicated in three locations of the Rolling Pampa (Argentina). Soil and plant sampling took place immediately after the soybean harvest, in the second year. The most diverse rotation (field pea-maize, wheat-soybean) showed the highest standing biomass and litter and the most metabolically diverse and active soil microbial community (P minor or equal sign 0.05). In turn, metabolic diversity was positively associated with plant and litter biomass (r2=0.7) and with soil pH (r2=0.72). Our results revealed that crop rotation affects soil metabolic bacterial diversity and activity (P minor or equal sign 0.05). The most diverse rotation (four different crops) had also the most diverse and active soil microbial biota, concomitantly with a higher plant biomass production and soil pH. Because soil microbial activity and metabolic diversity detected in specific rotations potentially contribute to soil aggregate formation and other soil properties intimately related with nutrient cycling and plant production, the negative effect of agricultural intensification could be attenuated by designing specific and more diverse crop rotations. 
650 |2 Agrovoc  |9 26 
653 |a AGRICULTURAL INTENSIFICATION 
653 |a COMMUNITY LEVEL PHYSIOLOGICAL PROFILES 
653 |a ECOSYSTEM SERVICES 
653 |a PLANT-SOIL FEEDBACKS 
653 |a SOIL BIOTA 
700 1 |a D'Acunto, Luciana  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.   |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología. Buenos Aires, Argentina.   |9 29411 
700 1 |a Andrade, José Francisco  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura. Buenos Aires, Argentina.  |9 38153 
700 1 |a Poggio, Santiago Luis  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.   |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Producción Vegetal. Buenos Aires, Argentina.   |9 9496 
700 1 |a Semmartin, María  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.   |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología. Buenos Aires, Argentina.   |9 7454 
773 0 |t Agriculture, ecosystems and environment  |w SECS000013  |g Vol.257 (2018), p.159-164, grafs., tbls. 
856 |f 2018dacunto  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2018dacunto.pdf  |x ARTI201808 
856 |u https://www.elsevier.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG