Plant rhizodeposition a key factor for soil organic matter formation in stable fractions

Soil organic carbon formation remains poorly understood despite its importance for human livelihoods. Uncertainties remain for the relative contributions of aboveground, root, and rhizodeposition inputs to particulate (POC) and mineral-associated (MAOC) organic carbon fractions. Combining a novel f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Villarino, Sebastián Horacio, Pinto, Priscila, Jackson, Robert B., Piñeiro, Gervasio
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2021villarino.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03135cab a22003497a 4500
001 20220708152844.0
003 AR-BaUFA
005 20230811144119.0
008 220708t2021 xxud||||o|||| 00| 0 eng d
999 |c 54784  |d 54784 
999 |d 54784 
999 |d 54784 
999 |d 54784 
022 |a 2375-2548 
024 |a 10.1126/sciadv.abd3176 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 |a Plant rhizodeposition  |b a key factor for soil organic matter formation in stable fractions 
520 |a Soil organic carbon formation remains poorly understood despite its importance for human livelihoods. Uncertainties remain for the relative contributions of aboveground, root, and rhizodeposition inputs to particulate (POC) and mineral-associated (MAOC) organic carbon fractions. Combining a novel framework with isotope tracer studies, we quantified POC and MAOC formation efficiencies (% of C-inputs incorporated into each fraction). We found that rhizodeposition inputs have the highest MAOC formation efficiency (46%) as compared to roots (9%) or aboveground inputs (7%). In addition, rhizodeposition unexpectedly reduced POC formation, likely because it increased decomposition rates of new POC. Conversely, root biomass inputs have the highest POC formation efficiency (19%). Therefore, rhizodeposition and roots appear to play opposite but complementary roles for building MAOC and POC fractions. 
650 |2 Agrovoc  |9 26 
653 |a RHIZODEPOSITION 
653 |a SOIL ORGANIC CARBON 
653 |a INCUBATION EXPERIMENTS 
700 1 |a Villarino, Sebastián Horacio  |u CONICET. Buenos Aires, Argentina.  |u Universidad Nacional de Mar del Plata (UNMdP). Facultad de Ciencias Agrarias (FCA). Mar del Plata, Buenos Aires, Argentina.  |9 67422 
700 1 |a Pinto, Priscila  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 34725 
700 1 |a Jackson, Robert B.  |u Earth System Science Department. Woods Institute for the Environment. USA.  |u Stanford University. Precourt Institute for Energy. Stanford, USA.  |9 67510 
700 1 |9 22554  |a Piñeiro, Gervasio  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de la República. Facultad de Agronomía. Departamento de Sistemas Ambientales. Montevideo, Uruguay. 
773 |t Science Advances  |g Vol.7, no.16 (2021), art.eabd3176, 14 p., grafs., tbls. 
856 |f 2021villarino  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2021villarino.pdf  |x ARTI202206 
856 |u https://www.science.org/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG