A modification of the arcsine - log calibration curve for analysing soil test value - relative yield relationships

This article aims to discuss the arcsine- - log calibration curve (ALCC) method designed for the Better Fertiliser Decisions for Cropping Systems (BFDC) to calibrate relationships between relative yield (RY) and soil test value (STV). Its main advantage lies in estimating confidence limits of the cr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Correndo, Adrián Alejandro, Salvagiotti, Fernando, García, Fernando Oscar, Gutiérrez Boem, Flavio Hernán
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2017correndo.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03253nab a22003617a 4500
001 20180706103046.0
003 AR-BaUFA
005 20220908102359.0
008 180706t2017 at |||||o|||| 00| | eng d
999 |c 45697  |d 45697 
999 |d 45697 
999 |d 45697 
999 |d 45697 
999 |d 45697 
999 |d 45697 
022 |a 1836-0947 
024 |a 10.1071/CP16444 
040 |a AR-BaUFA 
245 1 0 |a A modification of the arcsine - log calibration curve for analysing soil test value - relative yield relationships 
520 |a This article aims to discuss the arcsine- - log calibration curve (ALCC) method designed for the Better Fertiliser Decisions for Cropping Systems (BFDC) to calibrate relationships between relative yield (RY) and soil test value (STV). Its main advantage lies in estimating confidence limits of the critical value (CSTV). Nevertheless, intervals for 95% confidence level are often too wide, and authors suggest a reduction in the confidence level to 70% in order to achieve narrower estimates. Still, this method can be further improved by modifying specific procedures. For this purpose, several datasets belonging to the BFDC were used. For any confidence level, estimates with the modified ALCC procedures were always more accurate than the original ALCC. The overestimation of confidence limits with the original ALCC was inversely related to the correlation coefficient of the dataset, which might allow a relatively simple and reliable correction of previous estimates. In addition, because the method is based on the correlation between STV and RY, the importance to test it for significance is emphasised in order to support the hypothesis of a relationship. Then, the modified ALCC approach could also allow a more reliable comparison of datasets by slopes of the bivariate linear relationship between transformed variables. 
653 |a BIVARIATE MODEL 
653 |a CORRELATION 
653 |a STANDARDISED MAJOR AXIS REGRESSION 
700 1 |9 32879  |a Correndo, Adrián Alejandro  |u International Plant Nutrition Institute (IPNI), Latin America Southern Cone Program. Acassuso, Buenos Aires, Argentina. 
700 1 |9 40308  |a Salvagiotti, Fernando  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros (EEA Oliveros). Oliveros, Santa Fe, Argentina. 
700 1 |9 9707  |a García, Fernando Oscar  |u International Plant Nutrition Institute (IPNI), Latin America Southern Cone Program. Acassuso, Buenos Aires, Argentina. 
700 1 |9 6387  |a Gutiérrez Boem, Flavio Hernán  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. 
773 0 |t Crop and pasture science  |w SECS001492  |g Vol.68, no.3 (2017), p.297-304, tbls., grafs. 
856 |f 2017correndo  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2017correndo.pdf  |x ARTI201807 
856 |z LINK AL EDITOR  |u http://www.publish.csiro.au/cp 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG