A methyl transferase links the circadian clock to the regulation of alternative splicing

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the dayg-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Sánchez, Sabrina E., Petrillo, Ezequiel, Beckwith, Esteban J., Zhang, Xu, Rugnone, Matías Leandro, Hernando, Carlos Esteban, Cuevas Alvarez, Julián, Godoy Herz, Micaela A., Depetris Chauvin, Ana, Simpson, Craig G., Brown, John W. S., Cerdán, Pablo D., Borevitz, Justin O., Mas, Paloma, Ceriani, M. Fernanda, Kornblihtt, Alberto R., Yanovsky, Marcelo J.
Formato: Artículo
Lenguaje:Inglés
Materias:
RNA
FLY
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2010Sanchez.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05265cab a22011777a 4500
001 AR-BaUFA000431
003 AR-BaUFA
005 20220816124501.0
008 181208t2010 a |||||o|||||00||||eng d
999 |c 46865  |d 46865 
999 |d 46865 
999 |d 46865 
999 |d 46865 
999 |d 46865 
999 |d 46865 
022 |a 0028-0836 
024 |a 10.1038/nature09470 
040 |a AR-BaUFA 
245 1 0 |a A methyl transferase links the circadian clock to the regulation of alternative splicing 
520 |a Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the dayg-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 [PRMT5], which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 [PRR9]. Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5'-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions. 
650 |2 Agrovoc  |9 26 
653 0 |a ARGININE DERIVATIVE 
653 0 |a HISTONE 
653 0 |a METHYL GROUP 
653 0 |a METHYLTRANSFERASE 
653 0 |a PROTEIN ARGININE METHYLTRANSFERASE 
653 0 |a PROTEIN ARGININE METHYLTRANSFERASE 5 
653 0 |a PROTEIN SM 
653 0 |a PSEUDO RESPONSE REGULATOR 9 
653 0 |a REGULATOR PROTEIN 
653 0 |a RNA 
653 0 |a UNCLASSIFIED DRUG 
653 0 |a CIRCADIAN RHYTHM 
653 0 |a ENZYME ACTIVITY 
653 0 |a FLY 
653 0 |a GENE EXPRESSION 
653 0 |a GENETIC ANALYSIS 
653 0 |a GENOME 
653 0 |a PHYSIOLOGICAL RESPONSE 
653 0 |a ALTERNATIVE RNA SPLICING 
653 0 |a CIRCADIAN RHYTHM 
653 0 |a CONTROLLED STUDY 
653 0 |a DROSOPHILA MELANOGASTER 
653 0 |a GENE DISRUPTION 
653 0 |a GENE MUTATION 
653 0 |a GENE OVEREXPRESSION 
653 0 |a LOCOMOTION 
653 0 |a MOLECULAR CLOCK 
653 0 |a MOLECULAR RECOGNITION 
653 0 |a NONHUMAN 
653 0 |a OSCILLATION 
653 0 |a PHENOTYPE 
653 0 |a PROTEIN EXPRESSION 
653 0 |a ALTERNATIVE SPLICING 
653 0 |a ANIMALS 
653 0 |a ARABIDOPSIS 
653 0 |a ARABIDOPSIS PROTEINS 
653 0 |a BASE SEQUENCE 
653 0 |a CIRCADIAN CLOCKS 
653 0 |a CIRCADIAN RHYTHM 
653 0 |a DARKNESS 
653 0 |a DROSOPHILA MELANOGASTER 
653 0 |a DROSOPHILA PROTEINS 
653 0 |a GENE EXPRESSION PROFILING 
653 0 |a GENE EXPRESSION REGULATION, PLANT 
653 0 |a LIGHT 
653 0 |a METHYLATION 
653 0 |a MUTATION 
653 0 |a PERIOD CIRCADIAN PROTEINS 
653 0 |a PROTEIN METHYLTRANSFERASES 
653 0 |a PROTEIN-ARGININE N-METHYLTRANSFERASES 
653 0 |a RNA PRECURSORS 
653 0 |a RNA SPLICE SITES 
653 0 |a RNA, MESSENGER 
653 0 |a SPLICEOSOMES 
653 0 |a TRANSCRIPTION FACTORS 
653 0 |a ARABIDOPSIS THALIANA 
653 0 |a DROSOPHILA MELANOGASTER 
700 1 |9 69989  |a Sánchez, Sabrina E. 
700 1 |a Petrillo, Ezequiel  |9 70094 
700 1 |a Beckwith, Esteban J.  |9 70095 
700 1 |a Zhang, Xu  |9 70096 
700 1 |a Rugnone, Matías Leandro  |9 70097 
700 1 |9 68586  |a Hernando, Carlos Esteban 
700 |a Cuevas Alvarez, Julián  |9 18024 
700 1 |a Godoy Herz, Micaela A.  |9 70099 
700 1 |a Depetris Chauvin, Ana  |9 70100 
700 1 |a Simpson, Craig G.  |9 70101 
700 1 |a Brown, John W. S.  |9 70105 
700 1 |a Cerdán, Pablo D.  |9 69636 
700 1 |9 69438  |a Borevitz, Justin O. 
700 1 |a Mas, Paloma  |9 70102 
700 1 |a Ceriani, M. Fernanda  |9 70103 
700 1 |a Kornblihtt, Alberto R.  |9 70104 
700 1 |9 11465  |a Yanovsky, Marcelo J. 
773 |t Nature  |g vol. 468, no.7320 (2010), p.112-116 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2010Sanchez.pdf  |i En reservorio  |q application/pdf  |f 2010Sanchez  |x MIGRADOS2018 
856 |u http://www.nature.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG