Fragment size, vegetation structure and physical environment control grassland functioning a test based on artificial neural networks

Questions: How do fragment-level characteristics affect remnant grassland functioning in a highly transformed landscape? Are artificial neural networks [ANNs] a better statistical tool to model variations in grassland functioning compared to linear regression models [LRMs]? Location: Tandilia Range,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Herrera, Lorena P.
Otros Autores: Texeira, Marcos, Paruelo, José María
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2013herrera1.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03425cab a22003617a 4500
001 AR-BaUFA000508
003 AR-BaUFA
005 20220726122133.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46942  |d 46942 
022 |a 1402-2001 
024 |a 10.1111/avsc.12009 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |a Herrera, Lorena P.  |9 35272 
245 0 0 |a Fragment size, vegetation structure and physical environment control grassland functioning   |b a test based on artificial neural networks 
520 |a Questions: How do fragment-level characteristics affect remnant grassland functioning in a highly transformed landscape? Are artificial neural networks [ANNs] a better statistical tool to model variations in grassland functioning compared to linear regression models [LRMs]? Location: Tandilia Range, Southern Pampa, Buenos Aires Province, Argentina. Methods: We characterized the dynamics of the vegetation functioning in 60 remnant grasslands using enhanced vegetation index [EVI] data provided by MODIS/Terra images from July 2000 to June 2005. First, we performed a principal components analysis [PCA] on the fragment mean monthly values of EVI in order to obtain synthetic measures [i.e. the PCA axes] of grassland functioning. Grassland fragments were also characterized by size, vegetation structure [abundance of the tall-tussock grass Paspalum quadrifarium] and physical environment [soil type - abundance of litholitic soils - elevation, aspect and slope]. The relationship between grassland functioning and these explanatory variables was explored using linear regression models [LRMs] and artificial neural networks [ANNs]. Results: The first and second PCA axes were related to the annual integral of EVI [EVI-I] and EVI seasonality [EVI-S], respectively; these explained jointly ca. 80 percent of total variability in mean EVI values. ANNs captured better than regression models the relationships among the proposed controls and the spatial variability of grassland functioning in Southern Pampa. Results showed that EVI-I variability was related to all independent variables except aspect. While fragment size, litholitic soils and slope were negatively related to EVI-I, the abundance of P. quadrifarium had a positive effect on the spectral index. Grasslands with high seasonality were large and had high slope and aspect, low abundance of P. quadrifarium and increased abundance of litholitic soils. Conclusions: Our results showed that grassland functioning in Southern Pampa, as estimated by EVI, depends on fragment size, vegetation structure and physical factors [soil type, aspect and slope]. Paspalum quadrifarium may have an important functional role in this grassland system. 
650 |2 Agrovoc  |9 26 
653 0 |a ENHANCED VEGETATION INDEX 
653 0 |a FRAGMENTATION 
653 0 |a LANDSCAPE STRUCTURE 
653 0 |a MODIS DATA 
653 0 |a NEURAL NETWORKS 
653 0 |a TALL-TUSSOCK GRASSLAND 
653 0 |a PASPALUM 
653 0 |a PASPALUM QUADRIFARIUM 
700 1 |a Texeira, Marcos  |9 32541 
700 1 |a Paruelo, José María  |9 788 
773 |t Applied Vegetation Science  |g vol.16, no.3 (2013), p.426-437 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2013herrera1.pdf  |i En reservorio  |q application/pdf  |f 2013herrera1  |x MIGRADOS2018 
856 |u http://www.wiley.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG