Nonparametric upscaling of stochastic simulation models using transition matrices

1. The problem of scaling up from tractable, small-scale observations and experiments to prediction of largescale patterns is at the core of ecological theory and application, and one of the central problems in ecology. 2. We present and test a general nonparametric framework to upscale spatially ex...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Cipriotti, Pablo Ariel, Wiegand, Thorsten, Pütz, Sandro, Bartoloni, Norberto José, Paruelo, José María
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2016cipriotti.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08511cab a22011417a 4500
001 AR-BaUFA001017
003 AR-BaUFA
005 20221101134837.0
008 181208t2016 |||||o|||||00||||eng d
999 |c 47373  |d 47373 
022 |a 2041-210X 
024 |a 10.1111/2041-210X.12464 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Nonparametric upscaling of stochastic simulation models using transition matrices 
520 |a 1. The problem of scaling up from tractable, small-scale observations and experiments to prediction of largescale patterns is at the core of ecological theory and application, and one of the central problems in ecology. 2. We present and test a general nonparametric framework to upscale spatially explicit and stochastic simulation models. The idea is to design a state space, defined by the important state variables of the small-scale model, and to divide it into a finite number of discrete states. Transition probabilities are then tallied bymonitoring extensive simulation runs of the small-scale model, covering the entire range of initial conditions, states and external drivers that may occur for the desired application. We exemplify our approach by upscaling an individual-based model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western Patagonia, Argentina, with a spatial resolution of 0-3 m X 0-3 manda 0-15-ha extent. The upscaledmodel simulates a 2500-ha paddock with 0-15-ha resolution and is enriched with additional rules that describe heterogeneity in the local stocking rate at the paddock scale. 3. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking rates and annual precipitation. The upscaled model produced excellent predictions for the long-term dynamics, but as expected, it did not fully capture the interannual dynamics of the original model. Rules for heterogeneity in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water points in arid rangelands. 4. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation models in which the dynamics can be approximated by a set of states, transitions and external drivers. Because estimation of the transition probabilities can be done parallel, our approach can be applied to a wide range ofmodels of intermediate complexity.Our approach closes a gap in our ability to scale up fromsmall scales, where the biological knowledge is available, to larger scales that are relevant for management. 
653 0 |a AGENT BASED MODELS 
653 0 |a COMPLEX SYSTEMS 
653 0 |a GRAPH THEORY 
653 0 |a MARKOV CHAINS 
653 0 |a META MODELS 
653 0 |a RANGELANDS 
653 0 |a SPATIALLY 
653 0 |a EXPLICITMODELS 
653 0 |a STATE TRANSITIONS MODELS 
653 0 |a SUCCESSION 
700 1 |9 20940  |a Cipriotti, Pablo Ariel 
700 1 |a Wiegand, Thorsten  |9 38577 
700 1 |a Pütz, Sandro  |9 72948 
700 1 |9 6346  |a Bartoloni, Norberto José 
700 1 |9 788  |a Paruelo, José María 
773 |t Methods in Ecology and Evolution  |g vol.7, no.3 (2016), p.313-322, tbls., grafs. 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2016cipriotti.pdf  |i En reservorio  |q application/pdf  |f 2016cipriotti  |x MIGRADOS2018 
856 |u www.wiley.com  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20170322 
900 |a 20170322 
900 |a 20170322 
900 |a N  
900 |a OK 
900 |a PENDIENTE 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 2041-210X 
900 |a 10.1111/2041-210X.12464 
900 |a ^tNonparametric upscaling of stochastic simulation models using transition matrices 
900 |a ^aCipriotti^bP. A. 
900 |a ^aWiegand^bT. 
900 |a ^aPütz^bS. 
900 |a ^aBartoloni^bN. J. 
900 |a ^aParuelo^bJ. M. 
900 |a ^aCipriotti^bPablo Ariel 
900 |a ^aWiegand^bThorsten 
900 |a ^aPütz^bSandro 
900 |a ^aBartoloni^bNorberto José 
900 |a ^aParuelo^bJosé María 
900 |a ^aCipriotti, Pablo Ariel^tDepto. de Métodos Cuantitativos y Sistemas de Información, IFEVA - Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Av. San Martín 4453, C1417DSE Ciudad de Buenos Aires, Argentina 
900 |a ^aWiegand, Thorsten^tHelmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany 
900 |a ^aPütz, Sandro^tHelmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany and Department of Bioenergy, Helmholtz Centre for Environmental Research - UFZ, POBox 500 136, 04301 Leipzig, Germany 
900 |a ^aBartoloni, Norberto José^tDepto. de Métodos Cuantitativos y Sistemas de Información, IFEVA - Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Av. San Martín 4453, C1417DSE Ciudad de Buenos Aires, Argentina 
900 |a ^aParuelo, José María^tDepto. de Métodos Cuantitativos y Sistemas de Información, IFEVA - Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Av. San Martín 4453, C1417DSE Ciudad de Buenos Aires, Argentina y Laboratorio de Análisis Regional y Teledetección, IFEVA, Facultad de Agronomía, Universidad de Buenos Aires/CONICET, Ciudad de Buenos Aires, Argentina 
900 |a ^tMethods in Ecology and Evolution 
900 |a en 
900 |a p.313-322 
900 |a ^itbls., grafs. 
900 |a Vol.7, no.3 (2016) 
900 |a 322 
900 |a AGENT BASED MODELS 
900 |a COMPLEX SYSTEMS 
900 |a GRAPH THEORY 
900 |a MARKOV CHAINS 
900 |a META MODELS 
900 |a RANGELANDS 
900 |a SPATIALLY 
900 |a EXPLICITMODELS 
900 |a STATE TRANSITIONS MODELS 
900 |a SUCCESSION 
900 |a 1. The problem of scaling up from tractable, small-scale observations and experiments to prediction of largescale patterns is at the core of ecological theory and application, and one of the central problems in ecology. 
900 |a 2. We present and test a general nonparametric framework to upscale spatially explicit and stochastic simulation models. 
900 |a The idea is to design a state space, defined by the important state variables of the small-scale model, and to divide it into a finite number of discrete states. Transition probabilities are then tallied bymonitoring extensive simulation runs of the small-scale model, covering the entire range of initial conditions, states and external drivers that may occur for the desired application.  
900 |a We exemplify our approach by upscaling an individual-based model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western Patagonia, Argentina, with a spatial resolution of 0-3 m X 0-3 manda 0-15-ha extent. 
900 |a The upscaledmodel simulates a 2500-ha paddock with 0-15-ha resolution and is enriched with additional rules that describe heterogeneity in the local stocking rate at the paddock scale. 
900 |a 3. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking rates and annual precipitation. 
900 |a The upscaled model produced excellent predictions for the long-term dynamics, but as expected, it did not fully capture the interannual dynamics of the original model. 
900 |a Rules for heterogeneity in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water points in arid rangelands. 
900 |a 4. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation models in which the dynamics can be approximated by a set of states, transitions and external drivers. 
900 |a Because estimation of the transition probabilities can be done parallel, our approach can be applied to a wide range ofmodels of intermediate complexity.Our approach closes a gap in our ability to scale up fromsmall scales, where the biological knowledge is available, to larger scales that are relevant for management. 
900 |a 2016 
900 |a AAG 
900 |a 2016cipriotti 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2016cipriotti.pdf 
900 |a www.wiley.com 
900 |a BP 
900 |a BP 
900 |a BP 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc