|
|
|
|
| LEADER |
02485nam a22006017a 4500 |
| 003 |
AR-BaUEN |
| 005 |
20250827191552.0 |
| 008 |
210706s2015 xxkd|||f |||| 001 0 eng d |
| 020 |
|
|
|a 9781316227619
|
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 044 |
|
|
|a xxk
|
| 080 |
|
|
|a 517.518
|b M444
|
| 100 |
1 |
|
|a Mattila, Pertti
|
| 245 |
1 |
0 |
|a Fourier analysis and Hausdorff dimension /
|c Pertti Mattila
|
| 260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c c2015
|
| 300 |
|
|
|a xiv, 440 p. :
|b il., gráfs.
|
| 490 |
0 |
|
|a Cambridge studies in advanced mathematics ;
|v 150
|
| 504 |
|
|
|a Referencias bibliográficas pp. 413-433.
|
| 504 |
|
|
|a Índice analítico de autores y de materias.
|
| 505 |
0 |
0 |
|g 1
|t Introduction
|
| 505 |
0 |
0 |
|t Part I - Preliminaries and some simpler applications of the Fourier transform
|
| 505 |
0 |
0 |
|g 2
|t Measure theoretic preliminaries
|
| 505 |
0 |
0 |
|g 3
|t Fourier transforms
|
| 505 |
0 |
0 |
|g 4
|t Hausdorff dimension of projections and distance sets
|
| 505 |
0 |
0 |
|g 5
|t Exceptional projections and Sobolev dimension
|
| 505 |
0 |
0 |
|g 6
|t Slices of measures and intersections with planes
|
| 505 |
0 |
0 |
|g 7
|t Intersections of general sets and measures
|
| 505 |
0 |
0 |
|t Part II - Specific constructions
|
| 505 |
0 |
0 |
|g 8
|t Cantor measures
|
| 505 |
0 |
0 |
|g 9
|t Bernoulli convolutions
|
| 505 |
0 |
0 |
|g 10
|t Projections of the four-corner Cantor set
|
| 505 |
0 |
0 |
|g 11
|t Besicovitch sets
|
| 505 |
0 |
0 |
|g 12
|t Brownian motion
|
| 505 |
0 |
0 |
|g 13
|t Riesz products
|
| 505 |
0 |
0 |
|g 14
|t Oscillatory integrals (stationary phase) and surface measures
|
| 505 |
0 |
0 |
|t Part III - Deeper applications of the Fourier transform
|
| 505 |
0 |
0 |
|g 15
|t Spherical averages and distance sets
|
| 505 |
0 |
0 |
|g 16
|t Proof of the Wolff–Erdoğan Theorem
|
| 505 |
0 |
0 |
|g 17
|t Sobolev spaces, Schrödinger equation and spherical averages
|
| 505 |
0 |
0 |
|g 18
|t Generalized projections of Peres and Schlag
|
| 505 |
0 |
0 |
|t Part IV - Fourier restriction and Kakeya type problems
|
| 505 |
0 |
0 |
|g 19
|t Restriction problems
|
| 505 |
0 |
0 |
|g 20
|t Stationary phase and restriction
|
| 505 |
0 |
0 |
|g 21
|t Fourier multipliers
|
| 505 |
0 |
0 |
|g 22
|t Kakeya problems
|
| 505 |
0 |
0 |
|g 23
|t Dimension of Besicovitch sets and Kakeya maximal inequalities
|
| 505 |
0 |
0 |
|g 24
|t (n, k) Besicovitch sets
|
| 505 |
0 |
0 |
|g 25
|t Bilinear restriction
|
| 650 |
1 |
7 |
|2 spines
|a ANALISIS DE FOURIER
|
| 653 |
1 |
0 |
|a DIMENSION DE HAUSDORFF
|
| 653 |
1 |
0 |
|a TEORIA GEOMETRICA DE LA MEDIDA
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 89657
|