Quantum theory, groups and representations : an introduction /

Guardado en:
Detalles Bibliográficos
Autor principal: Woit, Peter
Formato: Libro
Lenguaje:Inglés
Publicado: Cham : Springer, c2017
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03968nam a22008657a 4500
003 AR-BaUEN
005 20251212155305.0
008 210824s2017 sz ad||f |||| 001 0 eng d
020 |a 9783319646107 
040 |a AR-BaUEN  |b spa  |c AR-BaUEN 
044 |a sz  
080 |a 530.145 
100 1 |a Woit, Peter 
245 1 0 |a Quantum theory, groups and representations :   |b an introduction /   |c Peter Woit 
260 |a Cham :   |b Springer,   |c c2017 
300 |a xxii, 668 p. :   |b il., gráfs. 
500 |a Incluye ejercicios. 
504 |a Bibliografía pp. 659-663. 
504 |a Índice analítico de materias. 
505 0 0 |g 1  |t Introduction and overview 
505 0 0 |g 2  |t The group U (1) and its representations 
505 0 0 |g 3  |t Two-state systems and SU (2) 
505 0 0 |g 4  |t Linear algebra review, unitary and orthogonal groups 
505 0 0 |g 5  |t Lie algebras and lie algebra representations 
505 0 0 |g 6  |t The rotation and spin groups in three and four dimensions 
505 0 0 |g 7  |t Rotations and the Spin ½ particle in a magnetic field 
505 0 0 |g 8  |t Representations of SU (2) and SO (3) 
505 0 0 |g 9  |t Tensor products, entaglement, and addition of spin 
505 0 0 |g 10  |t Momentum and the free particle 
505 0 0 |g 11  |t Fourier analysis and the free particle 
505 0 0 |g 12  |t Position and the free particle 
505 0 0 |g 13  |t The Heinsenberg group and the Schrödinger representation 
505 0 0 |g 14  |t The poisson bracket and symplectic geometry 
505 0 0 |g 15  |t Hamiltonian vector fields and the moment map 
505 0 0 |g 16  |t Quadratic polynomials and the symplectic group 
505 0 0 |g 17  |t Quantization 
505 0 0 |g 18  |t Semi-direct products 
505 0 0 |g 19  |t The quantum free particle as a representation of the euclidean group 
505 0 0 |g 20  |t Representations of semi-direct products 
505 0 0 |g 21  |t Central potentials and the hydrogen atom 
505 0 0 |g 22  |t The harmonic oscillator 
505 0 0 |g 23  |t Coherent states and the propagator for the harmonic oscillator 
505 0 0 |g 24  |t The metaplectic representation and annihilation and creation operators, = 1 
505 0 0 |g 25  |t The metaplectic representation and annihilation and creation operators, arbitrary  
505 0 0 |g 26  |t Complex structures and quantization 
505 0 0 |g 27  |t The fermionic oscillator 
505 0 0 |g 28  |t Weyl and Clifford algebras 
505 0 0 |g 29  |t Clifford algebras and geometry 
505 0 0 |g 30  |t Anticommuting variables and pseudo-classical mechanics 
505 0 0 |g 31  |t Fermionic quantization and spinors 
505 0 0 |g 32  |t A summary: parallels between bosonic and fermionic quantization 
505 0 0 |g 33  |t Supersymmetry, some simple examples 
505 0 0 |g 34  |t The Pauli equation and the Dirac operator 
505 0 0 |g 35  |t Langragian methods and the path integral 
505 0 0 |g 36  |t Multiparticle systems: momentum space description 
505 0 0 |g 37  |t Multiparticle systems and field quantization 
505 0 0 |g 38  |t Symmetries and non-relativistic quantum fields 
505 0 0 |g 39  |t Quantization of infinite dimensional phase spaces 
505 0 0 |g 40  |t Minkowski space and the Lorentz group 
505 0 0 |g 41  |t Representations of the Lorentz group 
505 0 0 |g 42  |t The Pincaré group and its representations 
505 0 0 |g 43  |t The Klein-Gordon equation and scalar quantum fields 
505 0 0 |g 44  |t Symmetries and relativistic scalar quantum fields 
505 0 0 |g 45  |t U (1) Gauge symmetry and electromagnetic fields 
505 0 0 |g 46  |t Quantization of the electromagnetic field: the photon 
505 0 0 |g 47  |t The Dirac equation and spin ½ fields 
505 0 0 |g 48  |t An introduction to the standard model 
505 0 0 |g 49  |t Further topics 
505 0 0 |g A  |t Conventions 
505 0 0 |g B  |t Excercises 
650 1 7 |2 tesamat  |a QUANTA, TEORIA DE LOS 
650 1 7 |2 tesamat  |a LIE, GRUPOS DE 
650 1 7 |2 tesamat  |a LIE, ALGEBRAS DE 
962 |a info:eu-repo/semantics/book  |b info:eu-repo/semantics/publishedVersion 
999 |c 89703