|
|
|
|
| LEADER |
03968nam a22008657a 4500 |
| 003 |
AR-BaUEN |
| 005 |
20251212155305.0 |
| 008 |
210824s2017 sz ad||f |||| 001 0 eng d |
| 020 |
|
|
|a 9783319646107
|
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 044 |
|
|
|a sz
|
| 080 |
|
|
|a 530.145
|
| 100 |
1 |
|
|a Woit, Peter
|
| 245 |
1 |
0 |
|a Quantum theory, groups and representations :
|b an introduction /
|c Peter Woit
|
| 260 |
|
|
|a Cham :
|b Springer,
|c c2017
|
| 300 |
|
|
|a xxii, 668 p. :
|b il., gráfs.
|
| 500 |
|
|
|a Incluye ejercicios.
|
| 504 |
|
|
|a Bibliografía pp. 659-663.
|
| 504 |
|
|
|a Índice analítico de materias.
|
| 505 |
0 |
0 |
|g 1
|t Introduction and overview
|
| 505 |
0 |
0 |
|g 2
|t The group U (1) and its representations
|
| 505 |
0 |
0 |
|g 3
|t Two-state systems and SU (2)
|
| 505 |
0 |
0 |
|g 4
|t Linear algebra review, unitary and orthogonal groups
|
| 505 |
0 |
0 |
|g 5
|t Lie algebras and lie algebra representations
|
| 505 |
0 |
0 |
|g 6
|t The rotation and spin groups in three and four dimensions
|
| 505 |
0 |
0 |
|g 7
|t Rotations and the Spin ½ particle in a magnetic field
|
| 505 |
0 |
0 |
|g 8
|t Representations of SU (2) and SO (3)
|
| 505 |
0 |
0 |
|g 9
|t Tensor products, entaglement, and addition of spin
|
| 505 |
0 |
0 |
|g 10
|t Momentum and the free particle
|
| 505 |
0 |
0 |
|g 11
|t Fourier analysis and the free particle
|
| 505 |
0 |
0 |
|g 12
|t Position and the free particle
|
| 505 |
0 |
0 |
|g 13
|t The Heinsenberg group and the Schrödinger representation
|
| 505 |
0 |
0 |
|g 14
|t The poisson bracket and symplectic geometry
|
| 505 |
0 |
0 |
|g 15
|t Hamiltonian vector fields and the moment map
|
| 505 |
0 |
0 |
|g 16
|t Quadratic polynomials and the symplectic group
|
| 505 |
0 |
0 |
|g 17
|t Quantization
|
| 505 |
0 |
0 |
|g 18
|t Semi-direct products
|
| 505 |
0 |
0 |
|g 19
|t The quantum free particle as a representation of the euclidean group
|
| 505 |
0 |
0 |
|g 20
|t Representations of semi-direct products
|
| 505 |
0 |
0 |
|g 21
|t Central potentials and the hydrogen atom
|
| 505 |
0 |
0 |
|g 22
|t The harmonic oscillator
|
| 505 |
0 |
0 |
|g 23
|t Coherent states and the propagator for the harmonic oscillator
|
| 505 |
0 |
0 |
|g 24
|t The metaplectic representation and annihilation and creation operators, = 1
|
| 505 |
0 |
0 |
|g 25
|t The metaplectic representation and annihilation and creation operators, arbitrary
|
| 505 |
0 |
0 |
|g 26
|t Complex structures and quantization
|
| 505 |
0 |
0 |
|g 27
|t The fermionic oscillator
|
| 505 |
0 |
0 |
|g 28
|t Weyl and Clifford algebras
|
| 505 |
0 |
0 |
|g 29
|t Clifford algebras and geometry
|
| 505 |
0 |
0 |
|g 30
|t Anticommuting variables and pseudo-classical mechanics
|
| 505 |
0 |
0 |
|g 31
|t Fermionic quantization and spinors
|
| 505 |
0 |
0 |
|g 32
|t A summary: parallels between bosonic and fermionic quantization
|
| 505 |
0 |
0 |
|g 33
|t Supersymmetry, some simple examples
|
| 505 |
0 |
0 |
|g 34
|t The Pauli equation and the Dirac operator
|
| 505 |
0 |
0 |
|g 35
|t Langragian methods and the path integral
|
| 505 |
0 |
0 |
|g 36
|t Multiparticle systems: momentum space description
|
| 505 |
0 |
0 |
|g 37
|t Multiparticle systems and field quantization
|
| 505 |
0 |
0 |
|g 38
|t Symmetries and non-relativistic quantum fields
|
| 505 |
0 |
0 |
|g 39
|t Quantization of infinite dimensional phase spaces
|
| 505 |
0 |
0 |
|g 40
|t Minkowski space and the Lorentz group
|
| 505 |
0 |
0 |
|g 41
|t Representations of the Lorentz group
|
| 505 |
0 |
0 |
|g 42
|t The Pincaré group and its representations
|
| 505 |
0 |
0 |
|g 43
|t The Klein-Gordon equation and scalar quantum fields
|
| 505 |
0 |
0 |
|g 44
|t Symmetries and relativistic scalar quantum fields
|
| 505 |
0 |
0 |
|g 45
|t U (1) Gauge symmetry and electromagnetic fields
|
| 505 |
0 |
0 |
|g 46
|t Quantization of the electromagnetic field: the photon
|
| 505 |
0 |
0 |
|g 47
|t The Dirac equation and spin ½ fields
|
| 505 |
0 |
0 |
|g 48
|t An introduction to the standard model
|
| 505 |
0 |
0 |
|g 49
|t Further topics
|
| 505 |
0 |
0 |
|g A
|t Conventions
|
| 505 |
0 |
0 |
|g B
|t Excercises
|
| 650 |
1 |
7 |
|2 tesamat
|a QUANTA, TEORIA DE LOS
|
| 650 |
1 |
7 |
|2 tesamat
|a LIE, GRUPOS DE
|
| 650 |
1 |
7 |
|2 tesamat
|a LIE, ALGEBRAS DE
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 89703
|