|
|
|
|
| LEADER |
01624nam a22004577a 4500 |
| 003 |
AR-BaUEN |
| 005 |
20251015185056.0 |
| 008 |
220208s2021 nyua|d|f |||| 001 0|eng|d |
| 020 |
|
|
|a 9781071614174
|
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 044 |
|
|
|a xxu
|
| 080 |
|
|
|a 519.23
|
| 100 |
1 |
|
|a James, Gareth
|
| 245 |
1 |
3 |
|a An introduction to statistical learning :
|b with applications in R /
|c Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
|
| 250 |
|
|
|a 2nd ed.
|
| 260 |
|
|
|a New York, NY :
|b Springer,
|c c2021
|
| 300 |
|
|
|a xv, 607 p. :
|b il. color, gráfs. color, tablas
|
| 490 |
0 |
|
|a Springer texts in statistics
|
| 500 |
|
|
|a Incluye ejercicios al final de cada capítulo.
|
| 504 |
|
|
|a Índice analítico de materias.
|
| 505 |
0 |
0 |
|g 2
|t Statistical learning
|
| 505 |
0 |
0 |
|g 3
|t Linear regression
|
| 505 |
0 |
0 |
|g 4
|t Classification
|
| 505 |
0 |
0 |
|g 5
|t Resampling methods
|
| 505 |
0 |
0 |
|g 6
|t Linear model selection and regularization
|
| 505 |
0 |
0 |
|g 7
|t Moving beyond linearity
|
| 505 |
0 |
0 |
|g 8
|t Tree-based methods
|
| 505 |
0 |
0 |
|g 9
|t Support vector machines
|
| 505 |
0 |
0 |
|g 10
|t Deep learning
|
| 505 |
0 |
0 |
|g 11
|t Survival analysis and censored data
|
| 505 |
0 |
0 |
|g 12
|t Unsupervised learning
|
| 505 |
0 |
0 |
|g 13
|t Multiple testing
|
| 650 |
1 |
7 |
|2 spines
|a ANALISIS ESTADISTICO
|
| 650 |
1 |
7 |
|2 spines
|a ANALISIS FUNCIONAL
|
| 653 |
1 |
0 |
|a APRENDIZAJE ESTADISTICO
|
| 653 |
1 |
0 |
|a R (LENGUAJE DE PROGRAMACION)
|
| 700 |
1 |
|
|a Witten, Daniela
|
| 700 |
1 |
|
|a Hastie, Trevor
|
| 700 |
1 |
|
|a Tibshirani, Robert
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 89901
|