Solution equations and systems of equations

Guardado en:
Detalles Bibliográficos
Autor principal: Ostrowski, Alexander Markowitsch
Formato: Libro
Lenguaje:Español
Publicado: New York, NY : Academic Press, 1966
London : [s.n.]
Edición:2nd. ed.
Colección:Pure and applied mathematics: a series of monographs and textbooks ; 9
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02994cam a22006257a 4500
001 BIBLO-14827
003 AR-BaUEN
005 20201111150150.0
008 201111s1966 nyu||d|f |||| 00| 0|spa|d
040 |a AR-BaUEN  |b spa  |c AR-BaUEN 
044 |a xxu 
080 |a 517.91 
100 1 |a Ostrowski, Alexander Markowitsch 
245 1 0 |a Solution equations and systems of equations 
250 |a 2nd. ed. 
260 |a New York, NY :  |b Academic Press,  |c 1966 
260 |a London :  |b [s.n.] 
300 |a 338 p. :  |b diagrs., tablas 
490 0 |a Pure and applied mathematics: a series of monographs and textbooks ;  |v 9 
505 0 0 |t Preface to the First Edition 
505 0 0 |t Preface to the Second Edition 
505 0 0 |g 1.  |t DIVIDED DIFFERENCES 
505 0 0 |g 2.  |t INVERSE INTERPOLATION. DERIVATIVES OF THE INVERSE FUNCTION. ONE INTERPOLATION POINT 
505 0 0 |g 3.  |t METHOD OF FALSE POSITION (REGULA FALSI) 
505 0 0 |g 4.  |t ITERATION 
505 0 0 |g 5.  |t FURTHER DISCUSSION OF ITERATIONS. MULTIPLE ZEROS 
505 0 0 |g 6.  |t NEWTON-RAPHSON METHOD 
505 0 0 |g 7.  |t FUNDAMENTAL EXISTENCE THEOREMS FOR NEWTON-RAPHSON ITERATION 
505 0 0 |g 8.  |t AN ANALOG OF THE NEWTON-RAPHSON METHOD FOR MULTIPLE ROOTS 
505 0 0 |g 9.  |t FOURIER BOUNDS FOR NEWTON-RAPHSON ITERATION 
505 0 0 |g 10.  |t DANDELIN BOUNDS FOR NEWTON-RAPHSON ITERATION 
505 0 0 |g 11.  |t THREE INTERPOLATION POINTS 
505 0 0 |g 12.  |t LINEAR DIFFERENCE EQUATIONS 
505 0 0 |g 13.  |t n DISTINCT POINTS OF INTERPOLATION 
505 0 0 |g 14.  |t n + 1 COINCIDENT POINTS OF INTERPOLATION AND TAYLOR DEVELOPMENT OF THE ROOT 
505 0 0 |g 15.  |t THE SQUARE ROOT ITERATION 
505 0 0 |g 16.  |t FURTHER DISCUSSION OF SQUARE ROOT ITERATION 
505 0 0 |g 17.  |t A GENERAL THEOREM ON ZEROS OF INTERPOLATING POLYNOMIALS 
505 0 0 |g 18.  |t APPROXIMATION OF EQUATIONS BY ALGEBRAIC EQUATIONS OF A GIVEN DEGREE. ASYMPTOTIC ERRORS FOR SIMPLE ROOTS 
505 0 0 |g 19.  |t NORMS OF VECTORS AND MATRICES 
505 0 0 |g 20.  |t TWO THEOREMS ON CONVERGENCE OF PRODUCTS OF MATRICES 
505 0 0 |g 21.  |t A THEOREM ON DIVERGENCE OF PRODUCTS OF MATRICES 
505 0 0 |g 22.  |t CHARACTERIZATION OF POINTS OF ATTRACTION AND REPULSION FOR ITERATIONS WITH SEVERAL VARIABLES 
505 0 0 |g 23.  |t FURTHER DISCUSSION OF NORMS OF MATRICES. Δq(A) 
505 0 0 |g 24.  |t AN EXISTENCE THEOREM FOR SYSTEMS OF EQUATIONS 
505 0 0 |g 25.  |t n-DIMENSIONAL GENERALIZATION OF THE NEWTON-RAPHSON METHOD. STATEMENT OF THE THEOREMS 
505 0 0 |g 26.  |t n-DIMENSIONAL GENERALIZATION OF THE NEWTON-RAPHSON METHOD. PROOFS OF THE THEOREMS 
505 0 0 |g 27.  |t METHOD OF STEEPEST DESCENT. CONVERGENCE OF THE PROCEDURE 
505 0 0 |g 28.  |t METHOD OF STEEPEST DESCENT. WEAKLY LINEAR CONVERGENCE OF THE ξu 
505 0 0 |g 29.  |t METHOD OF STEEPEST DESCENT. LINEAR CONVERGENCE OF THE ξu 
505 0 0 |t APPENDICES 
505 0 0 |t Bibliographical Notes 
505 0 0 |t Index 
962 |a info:eu-repo/semantics/book  |a info:ar-repo/semantics/libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 14446