Solution of equations and systems of equations

Guardado en:
Detalles Bibliográficos
Autor principal: Ostrowski, Alexander Markowitsch
Formato: Libro
Lenguaje:Español
Publicado: New York, NY : Academic Press, 1960
Edición:1st. ed.
Colección:Pure and applied mathematics ; nro.9
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02952cam a22006017a 4500
001 BIBLO-27084
003 AR-BaUEN
005 20201111150237.0
008 980427s1960 nyu||||f |||| 00| 0|spa|d
040 |a AR-BaUEN  |b spa  |c AR-BaUEN 
044 |a xxu 
080 |a 512.62 
100 1 |a Ostrowski, Alexander Markowitsch 
245 1 0 |a Solution of equations and systems of equations 
250 |a 1st. ed. 
260 |a New York, NY :  |b Academic Press,  |c 1960 
300 |a ix, 202 p. 
490 0 |a Pure and applied mathematics ;  |v nro.9 
505 0 0 |t Preface 
505 0 0 |g 1.  |t Introduction. Remainder Terms of Interpolation Formulas 
505 0 0 |g 2.  |t Inverse Interpolation. Derivatives of the Inverse Function. One Interpolation Point 
505 0 0 |g 3.  |t Method of False Position (Regula Falsi) 
505 0 0 |g 4.  |t Iteration 
505 0 0 |g 5.  |t Further Discussion of Iterations. Multiple Roots 
505 0 0 |g 6.  |t Newton-Raphson Method 
505 0 0 |g 7.  |t Fundamental Existence Theorems in the Newton-Raphson Iteration 
505 0 0 |g 8.  |t An Analog of the Newton-Raphson Method for Multiple Roots 
505 0 0 |g 9.  |t Fourier Bounds for Newton-Raphson Iterarions 
505 0 0 |g 10.  |t Dandelin Bounds for Newton-Raphson Iterations 
505 0 0 |g 11.  |t Three Interpolation Point 
505 0 0 |g 12.  |t Linear Difference Equations 
505 0 0 |g 13.  |t n Distinct Point of Interpolation 
505 0 0 |g 14.  |t n+1 Coincident Point of Interpolation and the Taylor Development of the Root 
505 0 0 |g 15.  |t Norms of Vectors and Matrices 
505 0 0 |g 16.  |t Two Theorems on the Convergence of Product of Matrices 
505 0 0 |g 17.  |t A Theorem on the Divergence of Products of Matrices 
505 0 0 |g 18.  |t Characterization of Point of Attraction and Repulsion for Iterations with Several Variables 
505 0 0 |g Appendix A.  |t Continuity of the Roots of Algebraic Equation 
505 0 0 |g Appendix B.  |t Relative Continuity of the Roots of Algebraic Equations 
505 0 0 |g Appendix C.  |t An Explicit Formula for the nth Derivative of the Inverse Function 
505 0 0 |g Appendix D.  |t Analog of the Regula Falsi for two Equations with Two Unknowns 
505 0 0 |g Appendix E.  |t Steffensen´s Improved Iteration Rule 
505 0 0 |g Appendix F.  |t The Newton-Raphson Algorithm for Quadratic Polynomials 
505 0 0 |g Appendix G.  |t Some Modifications and an Improvement of the Newton-Raphson Method 
505 0 0 |g Appendix H.  |t Rounding Off in Inverse Interpolation 
505 0 0 |g Appendix I.  |t Accelerating Iterations with Superlinear Convergence 
505 0 0 |g Appendix J.  |t Roots of f(z)=0 from the Coefficients of the Development of 1/f(z) 
505 0 0 |g Appendix K.  |t Continuity of the Fundamental Roots as Functions of the Elements of the Matrix 
505 0 0 |t Bibliographical Notes 
505 0 0 |t Index 
653 1 0 |a ECUACIONES DE SISTEMAS 
962 |a info:eu-repo/semantics/book  |a info:ar-repo/semantics/libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 21378