|
|
|
|
| LEADER |
02952cam a22006017a 4500 |
| 001 |
BIBLO-27084 |
| 003 |
AR-BaUEN |
| 005 |
20201111150237.0 |
| 008 |
980427s1960 nyu||||f |||| 00| 0|spa|d |
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 044 |
|
|
|a xxu
|
| 080 |
|
|
|a 512.62
|
| 100 |
1 |
|
|a Ostrowski, Alexander Markowitsch
|
| 245 |
1 |
0 |
|a Solution of equations and systems of equations
|
| 250 |
|
|
|a 1st. ed.
|
| 260 |
|
|
|a New York, NY :
|b Academic Press,
|c 1960
|
| 300 |
|
|
|a ix, 202 p.
|
| 490 |
0 |
|
|a Pure and applied mathematics ;
|v nro.9
|
| 505 |
0 |
0 |
|t Preface
|
| 505 |
0 |
0 |
|g 1.
|t Introduction. Remainder Terms of Interpolation Formulas
|
| 505 |
0 |
0 |
|g 2.
|t Inverse Interpolation. Derivatives of the Inverse Function. One Interpolation Point
|
| 505 |
0 |
0 |
|g 3.
|t Method of False Position (Regula Falsi)
|
| 505 |
0 |
0 |
|g 4.
|t Iteration
|
| 505 |
0 |
0 |
|g 5.
|t Further Discussion of Iterations. Multiple Roots
|
| 505 |
0 |
0 |
|g 6.
|t Newton-Raphson Method
|
| 505 |
0 |
0 |
|g 7.
|t Fundamental Existence Theorems in the Newton-Raphson Iteration
|
| 505 |
0 |
0 |
|g 8.
|t An Analog of the Newton-Raphson Method for Multiple Roots
|
| 505 |
0 |
0 |
|g 9.
|t Fourier Bounds for Newton-Raphson Iterarions
|
| 505 |
0 |
0 |
|g 10.
|t Dandelin Bounds for Newton-Raphson Iterations
|
| 505 |
0 |
0 |
|g 11.
|t Three Interpolation Point
|
| 505 |
0 |
0 |
|g 12.
|t Linear Difference Equations
|
| 505 |
0 |
0 |
|g 13.
|t n Distinct Point of Interpolation
|
| 505 |
0 |
0 |
|g 14.
|t n+1 Coincident Point of Interpolation and the Taylor Development of the Root
|
| 505 |
0 |
0 |
|g 15.
|t Norms of Vectors and Matrices
|
| 505 |
0 |
0 |
|g 16.
|t Two Theorems on the Convergence of Product of Matrices
|
| 505 |
0 |
0 |
|g 17.
|t A Theorem on the Divergence of Products of Matrices
|
| 505 |
0 |
0 |
|g 18.
|t Characterization of Point of Attraction and Repulsion for Iterations with Several Variables
|
| 505 |
0 |
0 |
|g Appendix A.
|t Continuity of the Roots of Algebraic Equation
|
| 505 |
0 |
0 |
|g Appendix B.
|t Relative Continuity of the Roots of Algebraic Equations
|
| 505 |
0 |
0 |
|g Appendix C.
|t An Explicit Formula for the nth Derivative of the Inverse Function
|
| 505 |
0 |
0 |
|g Appendix D.
|t Analog of the Regula Falsi for two Equations with Two Unknowns
|
| 505 |
0 |
0 |
|g Appendix E.
|t Steffensen´s Improved Iteration Rule
|
| 505 |
0 |
0 |
|g Appendix F.
|t The Newton-Raphson Algorithm for Quadratic Polynomials
|
| 505 |
0 |
0 |
|g Appendix G.
|t Some Modifications and an Improvement of the Newton-Raphson Method
|
| 505 |
0 |
0 |
|g Appendix H.
|t Rounding Off in Inverse Interpolation
|
| 505 |
0 |
0 |
|g Appendix I.
|t Accelerating Iterations with Superlinear Convergence
|
| 505 |
0 |
0 |
|g Appendix J.
|t Roots of f(z)=0 from the Coefficients of the Development of 1/f(z)
|
| 505 |
0 |
0 |
|g Appendix K.
|t Continuity of the Fundamental Roots as Functions of the Elements of the Matrix
|
| 505 |
0 |
0 |
|t Bibliographical Notes
|
| 505 |
0 |
0 |
|t Index
|
| 653 |
1 |
0 |
|a ECUACIONES DE SISTEMAS
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 21378
|