|
|
|
|
LEADER |
01650cam a22004817a 4500 |
001 |
BIBLO-30108 |
003 |
AR-BaUEN |
005 |
20231023145133.0 |
008 |
020319s1997 xxuad||f |||| 001 0|eng|d |
020 |
|
|
|a 9780387982717
|
040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
044 |
|
|
|a xxu
|
080 |
|
|
|a 514.7
|
100 |
1 |
|
|a Lee, John M.
|4 aut
|e autor
|
245 |
1 |
0 |
|a Riemannian manifolds :
|b an introduction to curvature /
|c John M. Lee
|
260 |
|
|
|a New York, NY :
|b Springer,
|c c1997
|
300 |
|
|
|a xv, 224 p. :
|b il., gráfs.
|
490 |
0 |
|
|a Graduate texts in mathematics ;
|v 176
|
504 |
|
|
|a Índice analítico de materias.
|
504 |
|
|
|a Bibliografía pp. 209-211.
|
505 |
0 |
0 |
|g 1
|t What is curvature?
|
505 |
0 |
0 |
|g 2
|t Review of tensors, manifolds, and vector bundles
|
505 |
0 |
0 |
|g 3
|t Definitions and examples of riemannian metrics
|
505 |
0 |
0 |
|g 4
|t Connections
|
505 |
0 |
0 |
|g 5
|t Riemannian geodesics
|
505 |
0 |
0 |
|g 6
|t Geodesics and distance
|
505 |
0 |
0 |
|g 7
|t Curvature
|
505 |
0 |
0 |
|g 8
|t Riemannian submanifolds
|
505 |
0 |
0 |
|g 9
|t The Gauss-Bonnet theorem
|
505 |
0 |
0 |
|g 10
|t Jacobi fields
|
505 |
0 |
0 |
|g 11
|t Curvature and topology
|
541 |
|
|
|c CO
|a Jounal
|e CP242 FOMEC
|h {ARS}39,72
|
562 |
|
|
|e 1 ej.
|
650 |
1 |
7 |
|2 spines
|a GEOMETRIA DIFERENCIAL
|
650 |
1 |
7 |
|2 tesamat
|a GEOMETRIA RIEMANNIANA
|
650 |
1 |
7 |
|2 tesamat
|a VARIEDADES RIEMANNIANAS
|
691 |
|
7 |
|2 fcen-at
|a matematica
|
901 |
|
|
|a BIBLO
|b 00030148
|o NOEMI
|n 57230
|q Agustin Pagniez Maggio
|
942 |
|
|
|2 udc
|n 0
|c CIRES
|0 1
|
962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|
976 |
|
|
|a AEX
|
997 |
|
|
|a MONOGRAF
|
999 |
|
|
|c 23421
|d 23421
|