|
|
|
|
| LEADER |
02982cam a22008897a 4500 |
| 001 |
BIBLO-49159 |
| 003 |
AR-BaUEN |
| 005 |
20201111150615.0 |
| 008 |
170519s2013 nyu||||f |||| 00| 0|eng|d |
| 040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
| 020 |
|
|
|a 9781461480235
|
| 044 |
|
|
|a xxu
|
| 080 |
|
|
|a 512.81
|b B941
|
| 100 |
1 |
|
|a Bump, Daniel
|
| 245 |
1 |
0 |
|a Lie groups
|
| 250 |
|
|
|a 2nd. ed.
|
| 260 |
|
|
|a New York, NY :
|b Springer,
|c c2013
|
| 300 |
|
|
|a xiii, 551 p.
|
| 490 |
0 |
|
|a Graduate texts in mathematics ;
|v 225
|
| 500 |
|
|
|a Incluye ejercicios al final de cada capítulo
|
| 500 |
|
|
|a Referencias bibliográficas pp. 535-544
|
| 500 |
|
|
|a Índice analítico de materias.
|
| 505 |
0 |
0 |
|t Preface
|
| 505 |
0 |
0 |
|g 1
|t Haar Measure
|
| 505 |
0 |
0 |
|g 2
|t Schur Orthogonality
|
| 505 |
0 |
0 |
|g 3
|t Compact Operators
|
| 505 |
0 |
0 |
|g 4
|t The Peter-Weyl Theorem
|
| 505 |
0 |
0 |
|g 5
|t Lie Subgroups of GL(n,ℂ)
|
| 505 |
0 |
0 |
|g 6
|t Vector Fields
|
| 505 |
0 |
0 |
|g 7
|t Left-Invariant Vector Fields
|
| 505 |
0 |
0 |
|g 8
|t The Exponential Map
|
| 505 |
0 |
0 |
|g 9
|t Tensors and Universal Properties
|
| 505 |
0 |
0 |
|g 10
|t The Universal Enveloping Algebra
|
| 505 |
0 |
0 |
|g 11
|t Extension of Scalars
|
| 505 |
0 |
0 |
|g 12
|t Representations of sl(2,ℂ)
|
| 505 |
0 |
0 |
|g 13
|t The Universal Cover
|
| 505 |
0 |
0 |
|g 14
|t The Local Frobenius Theorem
|
| 505 |
0 |
0 |
|g 15
|t Tori
|
| 505 |
0 |
0 |
|g 16
|t Geodesics and Maximal Tori
|
| 505 |
0 |
0 |
|g 17
|t The Weyl Integration Formula
|
| 505 |
0 |
0 |
|g 18
|t The Root System
|
| 505 |
0 |
0 |
|g 19
|t Examples of Root Systems
|
| 505 |
0 |
0 |
|g 20
|t Abstract Weyl Groups
|
| 505 |
0 |
0 |
|g 21
|t Highest Weight Vectors
|
| 505 |
0 |
0 |
|g 22
|t The Weyl Character Formula
|
| 505 |
0 |
0 |
|g 23
|t The Fundamental Group
|
| 505 |
0 |
0 |
|g 24
|t Complexification
|
| 505 |
0 |
0 |
|g 25
|t Coxeter Groups
|
| 505 |
0 |
0 |
|g 26
|t The Borel Subgroup
|
| 505 |
0 |
0 |
|g 27
|t The Bruhat Decomposition
|
| 505 |
0 |
0 |
|g 28
|t Symmetric Spaces
|
| 505 |
0 |
0 |
|g 29
|t Relative Root Systems
|
| 505 |
0 |
0 |
|g 30
|t Embeddings of Lie Group
|
| 505 |
0 |
0 |
|g 31
|t Spin
|
| 505 |
0 |
0 |
|g 32
|t Mackey Theory
|
| 505 |
0 |
0 |
|g 33
|t Characters of GL(n,ℂ)
|
| 505 |
0 |
0 |
|g 34
|t Duality Between Sk and GL(n,ℂ)
|
| 505 |
0 |
0 |
|g 35
|t The Jacobi-Trudi Identity
|
| 505 |
0 |
0 |
|g 36
|t Schur Polynomials and GL(n,ℂ)
|
| 505 |
0 |
0 |
|g 37
|t Schur Polynomials and Sk
|
| 505 |
0 |
0 |
|g 38
|t The Cauchy Identity
|
| 505 |
0 |
0 |
|g 39
|t Random Matrix Theory
|
| 505 |
0 |
0 |
|g 40
|t Symmetric Group Branching Rules and Tableaux
|
| 505 |
0 |
0 |
|g 41
|t Unitary Branching Rules and Tableaux
|
| 505 |
0 |
0 |
|g 42
|t Minors of Toeplitz Matrices
|
| 505 |
0 |
0 |
|g 43
|t The Involution Model for Sk
|
| 505 |
0 |
0 |
|g 44
|t Some Symmetric Algebras
|
| 505 |
0 |
0 |
|g 45
|t Gelfand Pairs
|
| 505 |
0 |
0 |
|g 46
|t Hecke Algebras
|
| 505 |
0 |
0 |
|g 47
|t The Philosophy of Cusp Forms
|
| 505 |
0 |
0 |
|g 48
|t Cohomology of Grassmannians
|
| 505 |
0 |
0 |
|t Appendix: Sage
|
| 505 |
0 |
0 |
|t References
|
| 505 |
0 |
0 |
|t Index
|
| 653 |
1 |
0 |
|a GRUPOS DE LIE
|
| 962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|
| 999 |
|
|
|c 37928
|