Galectins and microenvironmental niches during hematopoiesis

Purpose of review: Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rabinovich, G.A
Otros Autores: Vidal, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 31104caa a22020057a 4500
001 PAPER-10189
003 AR-BaUEN
005 20230607131855.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80054748349 
024 7 |2 cas  |a galectin 1, 258495-34-0; galectin 3, 208128-56-7; Galectins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a COHEF 
100 1 |a Rabinovich, G.A. 
245 1 0 |a Galectins and microenvironmental niches during hematopoiesis 
260 |c 2011 
270 1 0 |m Vidal, M.; CNRS, UMR 5235, Université Montpellier II, Cc 107, Place E. Bataillon, Montpellier 34095, France; email: mvidal@univ-montp2.fr 
506 |2 openaire  |e Política editorial 
504 |a Takaku, T., Malide, D., Chen, J., Hematopoiesis in 3 dimensions: Human and murine bone marrow architecture visualized by confocal microscopy (2010) Blood, 116, pp. e41-e55 
504 |a Kiel, M.J., Morrison, S.J., Uncertainty in the niches that maintain haematopoietic stem cells (2008) Nature Reviews Immunology, 8 (4), pp. 290-301. , DOI 10.1038/nri2279, PII NRI2279 
504 |a Singbrant, S., Russell, M.R., Jovic, T., Erythropoietin couples erythropoiesis, B lymphopoiesis, and bone homeostasis within the bone marrow microenvironment (2011) Blood, 115, pp. 4689-4698 
504 |a Barondes, S.H., Castronovo, V., Cooper, D.N.W., Cummings, R.D., Drickamer, K., Feizi, T., Gitt, M.A., Rigby, P.W.J., Galectins: A family of animal β-galactoside-binding lectins (1994) Cell, 76 (4), pp. 597-598. , DOI 10.1016/0092-8674(94)90498-7 
504 |a Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Kasai, K.-I., Oligosaccharide specificity of galectins: A search by frontal affinity chromatography (2002) Biochimica et Biophysica Acta - General Subjects, 1572 (2-3), pp. 232-254. , DOI 10.1016/S0304-4165(02)00311-2, PII S0304416502003112 
504 |a Yang, R.Y., Rabinovich, G.A., Liu, F.T., Galectins: Structure, function and therapeutic potential (2008) Expert Rev Mol Med, 10, pp. e17 
504 |a Sundblad, V., Croci, D.O., Rabinovich, G.A., Regulated expression of galectin-3, a multifunctional glycan-binding protein, in haematopoietic and nonhaematopoietic tissues Histol Histopathol, 26, pp. 247-265 
504 |a Rabinovich, G.A., Ilarregui, J.M., Conveying glycan information into T-cell homeostatic programs: A challenging role for galectin-1 in inflammatory and tumor microenvironments (2009) Immunol Rev, 230, pp. 144-159 
504 |a Liu, F.T., Rabinovich, G.A., Galectins: Regulators of acute and chronic inflammation (2010) Ann N Y Acad Sci, 1183, pp. 158-182 
504 |a Laderach, D.J., Compagno, D., Toscano, M.A., Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings (2010) IUBMB Life, 62, pp. 1-13 
504 |a Delacour, D., Koch, A., Jacob, R., The role of galectins in protein trafficking (2009) Traffic, 10, pp. 1405-1413 
504 |a Zhuo, Y., Bellis, S.L., Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function (2011) J Biol Chem, 286, pp. 5935-5941 
504 |a Rabinovich, G.A., Toscano, M.A., Jackson, S.S., Vasta, G.R., Functions of cell surface galectin-glycoprotein lattices (2007) Current Opinion in Structural Biology, 17 (5), pp. 513-520. , DOI 10.1016/j.sbi.2007.09.002, PII S0959440X07001303, Carbohydrates and glycoconjugates / Biophysical methods 
504 |a Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr Opin Cell Biol, , [Epub ahead of print] 
504 |a Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.-T., Baum, L.G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) Journal of Immunology, 176 (2), pp. 778-789 
504 |a Nguyen, J.T., Evans, D.P., Galvan, M., Pace, K.E., Leitenberg, D., Bui, T.N., Baum, L.G., CD45 modulates galectin-1-induced T cell death: Regulation by expression of core 2 O-glycans (2001) Journal of Immunology, 167 (10), pp. 5697-5707 
504 |a Wang, J., Lu, Z.H., Gabius, H.J., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: Possible role in suppressing experimental autoimmune encephalomyelitis (2009) J Immunol, 182, pp. 4036-4045 
504 |a Rossi, B., Espeli, M., Schiff, C., Gauthier, L., Clustering of pre-B cell integrals induces galectin-1-dependent pre-B cell receptor relocalization and activation (2006) Journal of Immunology, 177 (2), pp. 796-803 
504 |a Fulcher, J.A., Chang, M.H., Wang, S., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J Biol Chem, 284, pp. 26860-26870 
504 |a Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat Immunol, 10, pp. 981-991 
504 |a Hsieh, S.H., Ying, N.W., Wu, M.H., Chiang, W.F., Hsu, C.L., Wong, T.Y., Jin, Y.T., Chen, Y.L., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27 (26), pp. 3746-3753. , DOI 10.1038/sj.onc.1211029, PII 1211029 
504 |a Bessis, M., Erythroblastic island, functional unity of bone marrow (1958) Rev Hematol, 13, pp. 8-11 
504 |a Manwani, D., Bieker, J.J., The erythroblastic island (2008) Curr Top Dev Biol, 82, pp. 23-53 
504 |a Chasis, J.A., Mohandas, N., Erythroblastic islands: Niches for erythropoiesis (2008) Blood, 112, pp. 470-478 
504 |a Rhodes, M.M., Kopsombut, P., Bondurant, M.C., Price, J.O., Koury, M.J., Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin (2008) Blood, 111 (3), pp. 1700-1708. , http://bloodjournal.hematologylibrary.org/cgi/reprint/111/3/1700, DOI 10.1182/blood-2007-06-098178 
504 |a Hanspal, M., Hanspal, J.S., The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: A 30-kD heparin-binding protein is involved in this contact (1994) Blood, 84 (10), pp. 3494-3504 
504 |a Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: Dual functions of host soluble beta-galactoside-binding lectins as damageassociated molecular patterns (DAMPs) and as receptors for pathogenassociated molecular patterns (PAMPs (2009) Immunol Rev, 230, pp. 172-187 
504 |a Crocker, P.R., Gordon, S., Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow (1985) Journal of Experimental Medicine, 162 (3), pp. 993-1014. , DOI 10.1084/jem.162.3.993 
504 |a Harrison, F.L., Chesterton, C.J., Erythroid developmental agglutinin is a protein lectin mediating specific cell-cell adhesion between differentiating rabbit erythroblasts (1980) Nature, 286 (5772), pp. 502-504. , DOI 10.1038/286502a0 
504 |a Harrison, F.L., Catt, J.W., Intra- and extracellular distribution of an endogenous lectin during erythropoiesis (1986) J Cell Sci, 84, pp. 201-212 
504 |a Cerra, R.F., Gitt, M.A., Barondes, S.H., Three soluble rat β-galactoside-binding lectins (1985) Journal of Biological Chemistry, 260 (19), pp. 10474-10477 
504 |a Gitt, M.A., Wiser, M.F., Leffler, H., Sequence and mapping of galectin-5, a beta-galactoside-binding lectin, found in rat erythrocytes (1995) J Biol Chem, 270, pp. 5032-5038 
504 |a Wada, J., Kanwar, Y.S., Identification and characterization of galectin-9, a novel β- galactoside-binding mammalian lectin (1997) Journal of Biological Chemistry, 272 (9), pp. 6078-6086. , DOI 10.1074/jbc.272.9.6078 
504 |a Lensch, M., Lohr, M., Russwurm, R., Vidal, M., Kaltner, H., Andre, S., Gabius, H.-J., Unique sequence and expression profiles of rat galectins-5 and -9 as a result of species-specific gene divergence (2006) International Journal of Biochemistry and Cell Biology, 38 (10), pp. 1741-1758. , DOI 10.1016/j.biocel.2006.04.004, PII S1357272506001312 
504 |a Lutomski, D., Fouillit, M., Bourin, P., Mellottee, D., Denize, N., Pontet, M., Bladier, D., Joubert-Caron, R., Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation (1997) Glycobiology, 7 (8), pp. 1193-1199. , DOI 10.1093/glycob/7.8.1193 
504 |a Altheide, T.K., Hayakawa, T., Mikkelsen, T.S., Diaz, S., Varki, N., Varki, A., System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution (2006) Journal of Biological Chemistry, 281 (35), pp. 25689-25702. , http://www.jbc.org/cgi/reprint/281/35/25689, DOI 10.1074/jbc.M604221200 
504 |a Sadahira, Y., Yasuda, T., Kimoto, T., Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci (1991) Immunology, 73, pp. 498-504 
504 |a Yoshida, H., Kawane, K., Koike, M., Mori, Y., Uchiyama, Y., Nagata, S., Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells (2005) Nature, 437 (7059), pp. 754-758. , DOI 10.1038/nature03964, PII N03964 
504 |a Freeman, G.J., Casasnovas, J.M., Umetsu, D.T., DeKruyff, R.H., TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity Immunol Rev, 235, pp. 172-189 
504 |a Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., Zheng, X.X., Kuchroo, V.K., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nature Immunology, 6 (12), pp. 1245-1252. , DOI 10.1038/ni1271, PII N1271 
504 |a Stowell, S.R., Karmakar, S., Stowell, C.J., Dias-Baruffi, M., McEver, R.P., Cummings, R.D., Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells (2007) Blood, 109 (1), pp. 219-227. , http://www.bloodjournal.org/cgi/reprint/109/1/219, DOI 10.1182/blood-2006-03-007153 
504 |a Stowell, S.R., Arthur, C.M., Slanina, K.A., Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain (2008) J Biol Chem, 283, pp. 20547-20559 
504 |a Lee, J.C.-M., Gimm, J.A., Lo, A.J., Koury, M.J., Krauss, S.W., Mohandas, N., Chasis, J.A., Mechanism of protein sorting during erythroblast enucleation: Role of cytoskeletal connectivity (2004) Blood, 103 (5), pp. 1912-1919. , DOI 10.1182/blood-2003-03-0928 
504 |a Salomao, M., Chen, K., Villalobos, J., Hereditary spherocytosis and hereditary elliptocytosis: Aberrant protein sorting during erythroblast enucleation (2010) Blood, 116, pp. 267-269. , This study relates the aberrant sorting of proteins during enucleation in hereditary spherocytosis and elliptocytosis. Major cytoskeletal proteins (e.g band 3, Rh-associated antigen, glycophorin A or C) are missorted to the extruded nucleus instead of being segregated to the reticulocyte 
504 |a Keerthivasan, G., Small, S., Liu, H., Vesicle trafficking plays a novel role in erythroblast enucleation (2010) Blood, 116, pp. 3331-3340. , Various selective inhibitors and the knockdown of clathrin have been used to demonstrate that endocytic vesicle trafficking has a critical role during enucleation. Endocytic vesicles are targeted to the nucleus in which they accumulate, coalesce and fuse with the plasma membrane contributing to separation between the extruding nucleus and nascent reticulocyte 
504 |a Skutelsky, E., Farquhar, M.G., Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat (1976) J Cell Biol, 71, pp. 218-231 
504 |a Skutelsky, E., Bayer, E.A., Cell type related segregation of surface galactosyl containing components at an early developmental stage in hemopoietic bone marrow cells in the rabbit (1983) Journal of Cell Biology, 96 (1), pp. 184-190. , DOI 10.1083/jcb.96.1.184 
504 |a Sano, H., Hsu, D.K., Apgar, J.R., Yu, L., Sharma, B.B., Kuwabara, I., Izui, S., Liu, F.-T., Critical role of galectin-3 in phagocytosis by macrophages (2003) Journal of Clinical Investigation, 112 (3), pp. 389-397. , DOI 10.1172/JCI200317592 
504 |a Chen, K., Liu, J., Heck, S., Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis (2009) Proc Natl Acad Sci U S A., 106, pp. 17413-17418 
504 |a Zhang, J., Randall, M.S., Loyd, M.R., Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation (2009) Blood, 114, pp. 157-164 
504 |a Liu, J., Guo, X., Mohandas, N., Membrane remodeling during reticulocyte maturation (2010) Blood, 115, pp. 2021-2027 
504 |a Pan, B.T., Johnstone, R.M., Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor (1983) Cell, 33 (3), pp. 967-977 
504 |a Harding, C., Heuser, J., Stahl, P., Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes (1983) J Cell Biol, 97, pp. 329-339 
504 |a Iacopetta, B.J., Morgan, E.H., Yeoh, G.C.T., Receptor-mediated endocytosis of transferrin by developing erythroid cells from the fetal rat liver (1983) Journal of Histochemistry and Cytochemistry, 31 (2), pp. 336-344 
504 |a Barres, C., Blanc, L., Bette-Bobillo, P., Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages (2010) Blood, 115, pp. 696-705. , Galectin-5 is found associated with the endosomal compartment and on the surface of rat reticulocyte exosomes, suggesting a translocation from the cytosol into the endosome lumen. A possible role in segregation/sorting of suitable galactose-bearing glycoconjugates is discussed 
504 |a Wu, A.M., Singh, T., Wu, J.H., Lensch, M., Andre, S., Gabius, H.-J., Interaction profile of galectin-5 with free saccharides and mammalian glycoproteins: Probing its fine specificity and the effect of naturally clustered ligand presentation (2006) Glycobiology, 16 (6), pp. 524-537. , DOI 10.1093/glycob/cwj102 
504 |a Stechly, L., Morelle, W., Dessein, A.F., Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells (2009) Traffic, 10, pp. 438-450 
504 |a Schneider, D., Greb, C., Koch, A., Trafficking of galectin-3 through endosomal organelles of polarized and nonpolarized cells (2010) Eur J Cell Biol, 89, pp. 788-798 
504 |a Merlin, J., Stechly, L., De Beauce, S., Galectin-3 regulates MUC1 and EGFR cellular distribution and EGFR downstream pathways in pancreatic cancer cells (2011) Oncogene, 30, pp. 2514-2525. , This study reports the regulation of MUCI and EGFR internalization and subcellular localization by galectin-3 in pancreatic cancer cells. Depletion of galectin-3 by RNA interference modifies oncogenic signaling pathways downstream of MUC1 and EGF.R 
504 |a Mishra, R., Grzybek, M., Niki, T., Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells (2010) Proc Natl Acad Sci U S A., 107, pp. 17633-17638. , Galectin-9 is internalized and recycled back to the apical membrane in MDCK cells. Sorting and delivery of the Forssman glycosphingolipid was impaired in the galectin-9 shRNA cells. This galectin-glycolipid interaction is critical to maintain epithelial integrity and cell polarity 
504 |a Klibi, J., Niki, T., Riedel, A., Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells (2009) Blood, 113, pp. 1957-1966 
504 |a Zomer, A., Vendrig, T., Hopmans, E.S., Exosomes: Fit to deliver small RNA (2010) Commun Integr Biol, 3, pp. 447-450 
504 |a Byon, J.C., Papayannopoulou, T., MicroRNAs allies or foes in erythropoiesis? (2011) J Cell Physiol, , doi: 10.1002/jcp.22729 [Epub ahead of print] 
504 |a Nagasawa, T., Microenvironmental niches in the bone marrow required for B-cell development (2006) Nature Reviews Immunology, 6 (2), pp. 107-116. , DOI 10.1038/nri1780, PII N1780 
504 |a Monroe, J.G., ITAM-mediated tonic signalling through pre-BCR and BCR complexes (2006) Nat Rev Immunol, 6, pp. 283-294 
504 |a Gauthier, L., Rossi, B., Roux, F., Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering (2002) Proc Natl Acad Sci U S A., 99, pp. 13014-13019 
504 |a Espeli, M., Mancini, S.J., Breton, C., Impaired B-cell development at the pre- BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions (2009) Blood, 113, pp. 5878-5886 
504 |a Mourcin, F., Breton, C., Tellier, J., Galectin-1 expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow (2011) Blood, 117, pp. 6552-6561. , In this study, the authors characterized stromal cells that express galectin-1 and constitute a specific cellular niche for pre-BII cells in mouse bone marrow. These stromal cells are distinct from IL7-secreting stromal cells, arguing for a migration of early B cells from IL7+ to galectin-1+ niches during their differentiation 
504 |a Zuniga, E., Rabinovich, G.A., Iglesias, M.M., Gruppi, A., Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis (2001) Journal of Leukocyte Biology, 70 (1), pp. 73-79 
504 |a Tsai, C.M., Chiu, Y.K., Hsu, T.L., Galectin-1 promotes immunoglobulin production during plasma cell differentiation (2008) J Immunol, 181, pp. 4570-4579 
504 |a Acosta-Rodriguez, E.V., Montes, C.L., Motran, C.C., Zuniga, E.I., Liu, F.-T., Rabinovich, G.A., Gruppi, A., Galectin-3 Mediates IL-4-Induced Survival and Differentiation of B Cells: Functional Cross-Talk and Implications during Trypanosoma cruzi Infection (2004) Journal of Immunology, 172 (1), pp. 493-502 
504 |a Hogquist, K.A., Baldwin, T.A., Jameson, S.C., Central tolerance: Learning self-control in the thymus (2005) Nature Reviews Immunology, 5 (10), pp. 772-782. , DOI 10.1038/nri1707 
504 |a Perillo, N.L., Uittenbogaart, C.H., Nguyen, J.T., Baum, L.G., Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes (1997) Journal of Experimental Medicine, 185 (10), pp. 1851-1858. , DOI 10.1084/jem.185.10.1851 
504 |a Pace, K.E., Lee, C., Stewart, P.L., Baum, L.G., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1 (1999) Journal of Immunology, 163 (7), pp. 3801-3811 
504 |a Earl, L.A., Bi, S., Baum, L.G., Galectin multimerization and lattice formation are regulated by linker region structure (2011) Glycobiology, 21, pp. 6-12 
504 |a Villa-Verde, D.M.S., Silva-Monteiro, E., Jasiulionis, M.G., Farias-De-Oliveira, D.A., Brentani, R.R., Savino, W., Chammas, R., Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment (2002) European Journal of Immunology, 32 (5), pp. 1434-1444. , DOI 10.1002/1521-4141(200205)32:5<1434::AID-IMMU1434>3.0.CO;2-M 
504 |a Silva-Monteiro, E., Lorenzato, L.R., Nihei, O.K., Junqueira, M., Rabinovich, G.A., Hsu, D.K., Liu, F.-T., Villa-Verde, D.M.S., Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection (2007) American Journal of Pathology, 170 (2), pp. 546-556. , DOI 10.2353/ajpath.2007.060389 
504 |a Bi, S., Earl, L.A., Jacobs, L., Baum, L.G., Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways (2008) J Biol Chem, 283, pp. 12248-12258 
504 |a Tribulatti, M.V., Mucci, J., Cattaneo, V., Agucero, F., Gilmartin, T., Head, S.R., Campetella, O., Galectin-8 Induces apoptosis in the CD4 highCD8 high thymocyte subpopulation (2007) Glycobiology, 17 (12), pp. 1404-1412. , DOI 10.1093/glycob/cwm104 
504 |a Liu, S.D., Whiting, C.C., Tomassian, T., Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes (2008) Blood, 112, pp. 120-130 
504 |a Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: Galectin-glycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9, pp. 338-352 
504 |a Cooper, D., Ilarregui, J.M., Pesoa, S.A., Multiple functional targets of the immunoregulatory activity of galectin-1: Control of immune cell trafficking, dendritic cell physiology, and T-cell fate (2010) Methods Enzymol, 480, pp. 199-244 
504 |a Garin, M.I., Chu, N.-C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., Galectin-1: A key effector of regulation mediated by CD4 +CD25 + T cells (2007) Blood, 109 (5), pp. 2058-2065. , http://bloodjournal.hematologylibrary.org/cgi/reprint/109/5/2058, DOI 10.1182/blood-2006-04-016451 
504 |a Kubach, J., Lutter, P., Bopp, T., Stoll, S., Becker, C., Huter, E., Richter, C., Jonuleit, H., Human CD4 +CD25 + regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110 (5), pp. 1550-1558. , http://bloodjournal.hematologylibrary.org/cgi/reprint/110/5/1550, DOI 10.1182/blood-2007-01-069229 
504 |a Gieseke, F., Bohringer, J., Bussolari, R., Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells Blood, 116, pp. 3770-3779 
504 |a Rabinovich, G.A., Ramhorst, R.E., Rubinstein, N., Corigliano, A., Daroqui, M.C., Kier-Joffe, E.B., Fainboim, L., Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms (2002) Cell Death and Differentiation, 9 (6), pp. 661-670. , DOI 10.1038/sj/cdd/4401009 
504 |a Cerliani, J.P., Stowell, S.R., Mascanfroni, I.D., Expanding the universe of cytokines and pattern recognition receptors: Galectins and glycans in innate immunity (2011) J Clin Immunol, 31, pp. 10-21 
504 |a Abedin, M.J., Kashio, Y., Seki, M., Nakamura, K., Hirashima, M., Potential roles of galectins in myeloid differentiation into three different lineages (2003) Journal of Leukocyte Biology, 73 (5), pp. 650-656. , DOI 10.1189/jlb.0402163 
504 |a Vas, V., Fajka-Boja, R., Ion, G., Dudics, V., Monostori, E., Uher, F., Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells (2005) Stem Cells, 23 (2), pp. 279-287. , DOI 10.1634/stemcells.2004-0084 
504 |a Mascanfroni, I.D., Cerliani, J.P., Dergan-Dylon, S., Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications (2011) Int Immunopharmacol, 11, pp. 831-838 
504 |a Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway J Immunol, 186, pp. 1521-1530 
504 |a Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic EMK-dependent pathway (2007) Journal of Immunology, 178 (1), pp. 436-445 
504 |a MacKinnon, A.C., Farnworth, S.L., Hodkinson, P.S., Regulation of alternative macrophage activation by galectin-3 (2008) J Immunol, 180, pp. 2650-2658 
504 |a Anderson, A.C., Anderson, D.E., Bregoli, L., Hastings, W.D., Kassam, N., Lei, C., Chandwaskar, R., Hafler, D.A., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells (2007) Science, 318 (5853), pp. 1141-1143. , DOI 10.1126/science.1148536 
504 |a Chen, H.-Y., Sharma, B.B., Yu, L., Zuberi, R., Weng, I.-C., Kawakami, Y., Kawakami, T., Liu, F.-T., Role of galectin-3 in mast cell functions: Galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression (2006) Journal of Immunology, 177 (8), pp. 4991-4997 
504 |a Niki, T., Tsutsui, S., Hirose, S., Galectin-9 is a high affinity IgE-binding lectin with antiallergic effect by blocking IgE-antigen complex formation (2009) J Biol Chem, 284, pp. 32344-32352 
504 |a Ge, X.N., Bahaie, N.S., Kang, B.N., Allergen-induced airway remodeling is impaired in galectin-3-deficient mice (2010) J Immunol, 185, pp. 1205-1214 
504 |a Nishi, N., Shoji, H., Seki, M., Itoh, A., Miyanaka, H., Yuube, K., Hirashima, M., Nakamura, T., Galectin-8 modulates neutrophil function via interaction with integrin αM (2003) Glycobiology, 13 (11), pp. 755-763. , DOI 10.1093/glycob/cwg102 
504 |a Fernandez, G.C., Ilarregui, J.M., Rubel, C.J., Toscano, M.A., Gomez, S.A., Bompadre, M.B., Isturiz, M.A., Palermo, M.S., Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK pathways (2005) Glycobiology, 15 (5), pp. 519-527. , DOI 10.1093/glycob/cwi026 
504 |a Larson, M.K., Watson, S.P., A product of their environment: Do megakaryocytes rely on extracellular cues for proplatelet formation? (2006) Platelets, 17 (7), pp. 435-440. , DOI 10.1080/09537100600772637, PII P3327T5223V193P4 
504 |a Malara, A., Gruppi, C., Rebuzzini, P., Megakaryocyte-matrix interaction within bone marrow: New roles for fibronectin and factor XIII-A Blood, 117, pp. 2476-2483 
504 |a Pallotta, I., Lovett, M., Rice, W., Bone marrow osteoblastic niche: A new model to study physiological regulation of megakaryopoiesis (2009) PLoS One, 4, pp. e8359 
504 |a D'Atri, L.P., Pozner, R.G., Nahmod, K.A., Paracrine regulation of megakaryo/ thrombopoiesis by macrophages (2011) Exp Hematol, pp. 763-772 
504 |a Pacienza, N., Pozner, R.G., Bianco, G.A., D'Atri, L.P., Croci, D.O., Negrotto, S., Malaver, E., Schattner, M., The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation (2008) FASEB Journal, 22 (4), pp. 1113-1123. , http://www.fasebj.org/cgi/reprint/22/4/1113, DOI 10.1096/fj.07-9524com 
520 3 |a Purpose of review: Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. Recent findings: An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. Summary: The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkin.  |l eng 
593 |a Instituto de Biología y Medicina (IBYME-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a UMR 5235 CNRS (DIMNP), Université Montpellier II, Montpellier 34095, France 
690 1 0 |a GALECTINS 
690 1 0 |a HEMATOPOIESIS 
690 1 0 |a MICROENVIRONMENTAL NICHES 
690 1 0 |a ECALECTIN 
690 1 0 |a GALECTIN 
690 1 0 |a GALECTIN 1 
690 1 0 |a GALECTIN 10 
690 1 0 |a GALECTIN 3 
690 1 0 |a GALECTIN 4 
690 1 0 |a GALECTIN 5 
690 1 0 |a GLYCOCONJUGATE 
690 1 0 |a GLYCOPROTEIN 
690 1 0 |a GLYCOSPHINGOLIPID 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a APOPTOSIS 
690 1 0 |a B LYMPHOCYTE 
690 1 0 |a CELL INTERACTION 
690 1 0 |a ERYTHROBLAST 
690 1 0 |a HEMATOPOIESIS 
690 1 0 |a HUMAN 
690 1 0 |a MYELOPOIESIS 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FAMILY 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN LOCALIZATION 
690 1 0 |a RETICULOCYTE 
690 1 0 |a REVIEW 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a STROMA CELL 
690 1 0 |a T LYMPHOCYTE 
690 1 0 |a THYMOCYTE 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a GALECTINS 
690 1 0 |a HEMATOPOIESIS 
690 1 0 |a HUMANS 
700 1 |a Vidal, M. 
773 0 |d 2011  |g v. 18  |h pp. 443-451  |k n. 6  |p Curr. Opin. Hematol.  |x 10656251  |t Current Opinion in Hematology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054748349&doi=10.1097%2fMOH.0b013e32834bab18&partnerID=40&md5=8c9bc5ac7692f7b14864d93ea004b3d8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1097/MOH.0b013e32834bab18  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10656251_v18_n6_p443_Rabinovich  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10656251_v18_n6_p443_Rabinovich  |y Registro en la Biblioteca Digital 
961 |a paper_10656251_v18_n6_p443_Rabinovich  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71142