Transition from exo to endo Cu absorption in CuSin clusters: A genetic algorithms density functional theory study

The characterisation and prediction of the structures of metal silicon clusters is important for nanotechnology research because these clusters can be used as building blocks for nanodevices, integrated circuits and solar cells. Several authors have postulated that there is a transition between exo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Oña, O.B
Otros Autores: Ferraro, Marta Beatriz, Facelli, J.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Taylor and Francis Ltd. 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13682caa a22011297a 4500
001 PAPER-10497
003 AR-BaUEN
005 20250314100055.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79960680179 
030 |a MOSIE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Oña, O.B. 
245 1 0 |a Transition from exo to endo Cu absorption in CuSin clusters: A genetic algorithms density functional theory study 
260 |b Taylor and Francis Ltd.  |c 2011 
270 1 0 |m Facelli, J.C.; Department of Biomedical Informatics, University of Utah, 155 South 1452 East, Salt Lake City, UT, United States; email: julio.facelli@utah.edu 
504 |a Elkind, J.L., Alford, J.M., Weiss, F.D., Laaksonen, R.T., Smalley, R.E., FT-ICR probes of silicon cluster chemistry: The special behavior of Si (1987) J. Chem. Phys., 87, pp. 2397-2399 
504 |a Shvartsburg, A.A., Jarrold, M.F., Liu, B., Lu, Z.-Y., Wang, C.-Z., Ho, K.-M., Dissociation energies of silicon clusters: A depth gauge for the global minimum on the potential energy surface (1998) Physical Review Letters, 81 (21), pp. 4616-4619 
504 |a Honea, E.C., Ogura, A., Murray, C.A., Raghavachari, K., Sprenger, W.O., Jarrold, M.F., Brown, W.L., Raman spectra of size- selected silicon clusters and comparison with calculated structures (1993) Nature (London), 366, pp. 42-44 
504 |a Raghavachari, K., Rohlfing, C.M., Bonding and stabilities of small silicon clusters: A theoretical study of Si7-Si10 (1988) J. Chem. Phys., 89, pp. 2219-2234 
504 |a Rohlfing, C.M., Raghavachari, K., Electronic structures and photoelectron spectra of Si and Si (1992) J. Chem. Phys., 96, pp. 2114-2117 
504 |a Ho, K.-M., Shvartsburg, A.A., Pan, B., Lu, Z.-Y., Wang, C.-Z., Wacker, J.G., Fye, J.L., Jarrold, M.F., Structures of medium-sized silicon clusters (1998) Nature, 392 (6676), pp. 582-585. , DOI 10.1038/33369 
504 |a Jarrold, M.F., Bower, J.E., Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres (1992) J. Chem. Phys., 96, pp. 9180-9190. , references therein 
504 |a Ma, L., Zhao, J., Wang, J., Wang, B., Wang, G., Growth behavior and magnetic properties ofSinFe (n~2-14) clusters (2006) Phys. Rev. B, 73, pp. 125439-125447 
504 |a Wang, J., Han, J.G., Geometries, stabilities, and electronic properties ofdifferent-sized ZrSin (n=1-16) clusters: A density- functional investigation (2005) J Chem. Phys., 123, pp. 064306-064321 
504 |a Hiura, H., Miyazaki, T., Kanayama, T., Structural transformation in the formation ofH-induced (111) platelets in Si (2001) Phys. Rev. Lett., 86, pp. 1773-1776 
504 |a Ohara, M., Koyasu, K., Nakajima, A., Kaya, K., Geometric and electronic structures of metal (M)-doped silicon cluster (M = Ti, Hf, Mo and W) (2003) Chemical Physics Letters, 371 (3-4), pp. 490-497. , DOI 10.1016/S0009-2614(03)00299-9, PII S0009261403002999 
504 |a Jaeger, J.B., Jaeger, T.D., Duncan, M.A., Photodissociation of metal-silicon clusters: Encapsulated versus surface-bound metal (2006) Journal of Physical Chemistry A, 110 (30), pp. 9310-9314. , DOI 10.1021/jp0629947 
504 |a Lu, J., Nagase, S., Structural and electronicproperties ofmetal- encapsulated silicon clusters in a large size range (2003) Phys. Rev. Lett., 90, pp. 115506-115509 
504 |a Sen, P., Mitas, L., Density-functional investigation of metal- silicon cage clusters MSin (M~Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; N-8-16) (2008) Phys Rev. B, 77, pp. 195417-195424 
504 |a Reveles, J.U., Kahnna, S.N., Electronic counting rules for the stability of metal-silicon clusters (2006) Phys. Rev. B, 74, pp. 035435-035440. , references therein 
504 |a Guo, L., Zhao, G., Gu, Y., Liu, X., Zeng, Z., Density-functional investigation of metal-silicon cage clusters MSin (M~Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; N~8-16) (2008) Phys Rev. B, 77, pp. 195417-195424 
504 |a Beck, S.M., Studies of silicon cluster-metal atom compound formation in a supersonic molecular beam (1987) J. Chem. Phys., 87, pp. 4233-4234 
504 |a Beck, S.M., Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: Implications for reactions at the metal/silicon interface (1989) J. Chem. Phys., 90, pp. 6306-6312 
504 |a Andriotis, A.N., Mpourmpakis, G., Froudakis, G., Menon, M., Stabilization of Si-based cage clusters and nanotubes by encapsulation of transition metal atoms (2002) New J. Phys., 4, pp. 781-7814 
504 |a Koyasu, K., Atobe, J., Akutsu, M., Mitsui, M., Nakajima, A., Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon (2007) Journal of Physical Chemistry A, 111 (1), pp. 42-49. , DOI 10.1021/jp066757f 
504 |a Xiao, C., Hagelberg, F., Lester Jr., W.A., Geometric, energetic, and bonding properties ofneutral and charged copper-doped silicon clusters (2002) Phys Rev. B, 66, pp. 075425-075447 
504 |a Zdetsis, A.D., Bonding and structural characteristics of Zn-, Cu-, and Ni-encapsulated Si clusters: Density-functional theory calcu- lations (2007) Phys Rev. B, 75, pp. 08549-08558 
504 |a Hossain, D., Pittman Jr., C.U., Gwaltney, S.R., Structures and stabilities of copper encapsulated within silicon nano-clusters: CuSin (n~9-15) (2008) Chem. Phys. Lett., 451, pp. 93-97 
504 |a Hagelberg, F., Xiao, C., Lester Jr., W.A., Cagelike Si12 clusters with endohedral Cu, Mo, and W metal atom impurities (2003) Phy Rev. B, 67, pp. 035426-035434 
504 |a Bazterra, V.E., Ferraro, M.B., Facelli, J.C., Modified genetic algorithm to model crystal structures. I. Benzene, naphthalene and anthracene (2002) Journal of Chemical Physics, 116 (14), pp. 5984-5991. , DOI 10.1063/1.1458547 
504 |a Bazterra, V.E., Cuma, M., Ferraro, M.B., Facelli, J.C., A general framework to understand parallel performance in heterogeneous systems (2005) J. Parallel Distr. Comput., 65, pp. 48-57 
504 |a Oña, O., Bazterra, V.E., Caputo, M.C., Ferraro, M.B., Facelli, J.C., Ab initio global optimization of the structures of Sin H. n~4-10, using parallel genetic algorithm (2005) Phys Rev. A, 72, pp. 053205-053212 
504 |a Luque, G., Alba, E., Dorronsoro, B., Parallel genetic algorithms (2005) Parallel Metaheuristics: A New Class of Algorithms, pp. 105-125. , E. Alba, ed. Wiley Hoboken, NJ 
504 |a Cantu-Paz, E., (2000) Efficient and Accurate Parallel Genetic Algorithms, Series: GeneticAlgorithms and Evolutionary Computation, 1. , Springer, Berlin 
504 |a Johnston, R.L., Roberts, C., Genetic algorithms for the geometry optimization of clusters and nanoparticles (2003) Soft Computing Approaches in Chemistry, 120, pp. 161-204. , H.M. Cartwright and M. Sztandera, eds. Springer-Verlag, Heildberg 
504 |a Oña, O., Bazterra, V.E., Caputo, M.C., Ferraro, M.B., Fuentealba, P., Facelli, J.C., Modified genetic algorithms to model atomic cluster structures: CuSi clusters (2004) J. Mol. Struct. (THEOCEHM), 681, pp. 149-155 
504 |a Ballone, P., Andreoni, W., Clusters, M., Eckardt, W., (1999), p. 71. , ed. Wiley Chichester; Oña, O., Bazterra, V.E., Caputo, M.C., Ferraro, M.B., Facelli, J.C., Global optimization of atomic cluster structures using parallel genetic algorithms (2006) Mater. Res. Soc. Symp., 894, pp. 277-281 
504 |a Parrinello, M., Andreoni, W., Computer Code CPMD V3.9, , http://www.cpmd.org/, Available at 
504 |a Goedecker, S., Hutter, J., Teter, M., Separable dual-space Gaussianpseudopotentials (1996) Phys. Rev. B, 54, pp. 1703-1710 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Physical Review Letters, 77 (18), pp. 3865-3868 
504 |a Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Po Le, J.A., (2004) Gaussian 03, , Revision C.02, Gaussian Inc., Wallingford CT 
504 |a Bazterra, V.E., Oña, O., Caputo, M.C., Ferraro, M.B., Fuentealba, P., Facelli, J.C., Modified genetic algorithms to model cluster structures in medium size silicon clusters (2004) Phys. Rev. A, 69, pp. 053202-053208 
504 |a Gruene, P., Fielicke, A., Meijer, G., Janssens, E., Ngan, V.T., Nguyen, M.T., Lievens, P., Tuning the geometric structure by doping silicon clusters (2008) Chem. Phys. Chem., 9, pp. 703-706 
504 |a King, R.B., Topological models ofthe chemical bonding in transition metal-silicon clusters (1991) Z Phys. D, 18, pp. 189-191 
504 |a Kishi, R., Iwata, S., Nakajima, A., Kaya, K., Geometric and electronic structures of silicon-sodium binary clusters. I. Ionization energy of SinNam (1997) Journal of Chemical Physics, 107 (8), pp. 3056-3070 
504 |a Xiao, C., Abraham, A., Quinn, R., Hagelberg, F., Lester Jr., W.A., Comparative study on the interaction of scandium and copper atoms with small silicon clusters (2002) Journal of Physical Chemistry A, 106 (46), pp. 11380-11393. , DOI 10.1021/jp021668y 
504 |a Schafer, R., Schlecht, S., Woenckhaus, J., Becker, J.A., Polarizabilities of isolated semiconductor clusters (1996) Physical Review Letters, 76 (3), pp. 471-474 
504 |a Wang, J., Yang, M., Wang, G., Zhan, J., Dipole polarizabilities of germanium clusters (2003) Chem. Phys. Lett., 367, pp. 448-454 
504 |a Pouchan, C., Begué, D., Zhang, D., Between geometry, stability, and polarizability: Density functional theory studies of silicon clusters Sin (n=3-10) (2004) J Chem. Phys., 121, pp. 4628-4634 
504 |a Jackson, K.A., Yang, M., Chaudhuri, I., Frauenheim, T., Shape, polarizability, and metallicity in silicon clusters (2005) Phys Rev. A, 71, pp. 033205-033210 
504 |a Hiura, H., Miyazaki, T., Kanayama, T., Formation of metal- encapsulating Si cage clusters (2001) Phys. Rev. Lett., 86, pp. 1733-1736 
504 |a Lightstone, J.M., Patterson, M.J., White, M.G., Reactivity of the M4S? (M~Mo W) cluster with CO and NH3 in the gas-phase: An experimental and DFT study (2005) Chem. Phys. Lett., 413, pp. 429-433 
506 |2 openaire  |e Política editorial 
520 3 |a The characterisation and prediction of the structures of metal silicon clusters is important for nanotechnology research because these clusters can be used as building blocks for nanodevices, integrated circuits and solar cells. Several authors have postulated that there is a transition between exo and endo absorption of Cu in Sin clusters and showed that, for n larger than 9, it is possible to find endohedral clusters. Unfortunately, no global searches have confirmed this observation, which is based on local optimisations of plausible structures. Here, we use parallel genetic algorithms (GAs), as implemented in our modified genetic algorithms (MGAC) software, directly coupled with density functional theory energy calculations to show that the global search of CuSin cluster structures does not find endohedral clusters for n8 but finds them for n10. © 2011 Taylor & Francis.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: PHY080012N 
536 |a Detalles de la financiación: 1S10RR017214-0 
536 |a Detalles de la financiación: This work has been partially supported by computer time allocations from the NSF TeraGrid PHY080012N and CHPC allocation on the Arches cluster partially funded by the NIH NCRR Grant No. 1S10RR017214-0. The software for this work used the GAlib genetic algorithm package, written by Matthew Wall at the Massachusetts Institute of Technology. MBF greatly acknowledges the financial support from the Universidad de Buenos Aires and the Argentinean CONICET. 
593 |a Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Biomedical Informatics, University of Utah, 155 South 1452 East, Salt Lake City, UT, United States 
593 |a Center for High Performance Computing, University of Utah, 155 South 1452 East, Salt Lake City, UT, United States 
690 1 0 |a COPPER-SILICON CLUSTERS 
690 1 0 |a GENETIC ALGORITHMS 
690 1 0 |a GLOBAL OPTIMISATION 
690 1 0 |a DENSITY FUNCTIONAL THEORY 
690 1 0 |a GENETIC ALGORITHMS 
690 1 0 |a GLOBAL OPTIMIZATION 
690 1 0 |a STRUCTURAL OPTIMIZATION 
690 1 0 |a DENSITY FUNCTIONAL THEORY STUDIES 
690 1 0 |a ENDOHEDRAL CLUSTERS 
690 1 0 |a ENERGY CALCULATION 
690 1 0 |a GLOBAL OPTIMISATION 
690 1 0 |a MODIFIED GENETIC ALGORITHMS 
690 1 0 |a NANOTECHNOLOGY RESEARCH 
690 1 0 |a PARALLEL GENETIC ALGORITHMS 
690 1 0 |a SILICON CLUSTERS 
690 1 0 |a CLUSTERING ALGORITHMS 
700 1 |a Ferraro, Marta Beatriz 
700 1 |a Facelli, J.C. 
773 0 |d Taylor and Francis Ltd., 2011  |g v. 37  |h pp. 678-688  |k n. 8  |p Mol Simul  |x 08927022  |w (AR-BaUEN)CENRE-6165  |t Molecular Simulation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960680179&doi=10.1080%2f08927020903583830&partnerID=40&md5=f51fb72840b7ef0cbe033ef346439cec  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/08927020903583830  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_08927022_v37_n8_p678_Ona  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08927022_v37_n8_p678_Ona  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_08927022_v37_n8_p678_Ona  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion