Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation

Control of protein synthesis and quality are critical steps to support eukaryotic cells' maintenance and survival. Two very distinctive mechanisms emerge as key checkpoints of protein synthesis regulation. The first one is the delivery of mRNA molecules, packed into ribonucleoprotein (mRNP) gra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Benseñor, L.B
Otros Autores: Vazquez, M.S, Boccaccio, G.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Bentham Science Publishers B.V. 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 33824caa a22025337a 4500
001 PAPER-10623
003 AR-BaUEN
005 20230607131856.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79953834159 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Benseñor, L.B. 
245 1 0 |a Common themes in RNA subcellular transport, stress granule formation and abnormal protein aggregation 
260 |b Bentham Science Publishers B.V.  |c 2011 
270 1 0 |m Boccaccio, G. L.; Instituto Leloir, Avenida Patricias Argentinas 435, C1405BWE-Buenos Aires, Argentina; email: gboccaccio@leloir.org.ar 
506 |2 openaire  |e Política editorial 
504 |a Martin, K.C., Ephrussi, A., mRNA localization: Gene expression in the spatial dimension (2009) Cell, 136, pp. 719-730 
504 |a Coller, J., Parker, R., General translational repression by activators of mRNA decapping (2005) Cell, 122, pp. 875-886 
504 |a Holmes, L.E., Campbell, S.G., De Long, S.K., Sachs, A.B., Ashe, M.P., Loss of translational control in yeast compromised for the major mRNA decay pathway (2004) Mol Cell Biol, 24, pp. 2998-3010 
504 |a Anderson, P., Kedersha, N., RNA granules (2006) J Cell Biol, 172, pp. 803-808 
504 |a Franks, T.M., Lykke-Andersen, J., The control of mRNA decapping and P-body formation (2008) Mol Cell, 32, pp. 605-615 
504 |a Parker, R., Sheth, U., P bodies and the control of mRNA translation and degradation (2007) Mol Cell, 25, pp. 635-646 
504 |a Thomas, M.G., Loschi, M., Desbats, M.A., Boccaccio, G.L., RNA granules: The good, the bad and the ugly (2011) Cell Signal, 23, pp. 324-334 
504 |a Seydoux, G., Braun, R.E., Pathway to totipotency: Lessons from germ cells (2006) Cell, 127, pp. 891-904 
504 |a Kiebler, M.A., Bassell, G.J., Neuronal RNA granules: Movers and makers (2006) Neuron, 51, pp. 685-690 
504 |a Johnston, J.A., Ward, C.L., Kopito, R.R., Aggresomes: A cellular response to misfolded proteins (1998) J Cell Biol, 143, pp. 1883-1898 
504 |a Garcia-Mata, R., Bebok, Z., Sorscher, E.J., Sztul, E.S., Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera (1999) J Cell Biol, 146, pp. 1239-1254 
504 |a Holt, C.E., Bullock, S.L., Subcellular mRNA localization in animal cells and why it matters (2009) Science, 326, pp. 1212-1216 
504 |a Yildiz, A., Selvin, P.R., Kinesin: Walking, crawling or sliding along? (2005) Trends Cell Biol, 15, pp. 112-120 
504 |a Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R., Kinesin walks handover-hand (2004) Science, 303, pp. 676-678 
504 |a Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R., Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement? (2005) Science, 308, pp. 1469-1472 
504 |a Shubeita, G.T., Tran, S.L., Xu, J., Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets (2008) Cell, 135, pp. 1098-1107 
504 |a Delanoue, R., Davis, I., Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo (2005) Cell, 122, pp. 97-106 
504 |a Delanoue, R., Herpers, B., Soetaert, J., Davis, I., Rabouille, C., Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies (2007) Dev Cell, 13, pp. 523-538 
504 |a McDougall, N., Clark, A., McDougall, E., Davis, I., Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps (2003) Dev Cell, 4, pp. 307-319 
504 |a Duncan, J.E., Warrior, R., The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte (2002) Curr Biol, 12, pp. 1982-1991 
504 |a Januschke, J., Gervais, L., Dass, S., Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation (2002) Curr Biol, 12, pp. 1971-1981 
504 |a Zimyanin, V.L., Belaya, K., Pecreaux, J., In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization (2008) Cell, 134, pp. 843-853 
504 |a Bullock, S.L., Nicol, A., Gross, S.P., Zicha, D., Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity (2006) Curr Biol, 16, pp. 1447-1452 
504 |a Kanai, Y., Dohmae, N., Hirokawa, N., Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule (2004) Neuron, 43, pp. 513-525 
504 |a Kiebler, M.A., Hemraj, I., Verkade, P., The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: Implications for its involvement in mRNA transport (1999) J Neurosci, 19, pp. 288-297 
504 |a Tang, S.J., Meulemans, D., Vazquez, L., Colaco, N., Schuman, E., A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites (2001) Neuron, 32, pp. 463-475 
504 |a Dictenberg, J.B., Swanger, S.A., Antar, L.N., Singer, R.H., Bassell, G.J., A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome (2008) Dev Cell, 14, pp. 926-939 
504 |a Davidovic, L., Jaglin, X.H., Lepagnol-Bestel, A.M., The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules (2007) Hum Mol Genet, 16 (24), pp. 3047-3058 
504 |a Sossin, W.S., des Groseillers, L., Intracellular trafficking of RNA in neurons (2006) Traffic, 7, pp. 1581-1589 
504 |a Abrahamyan, L.G., Chatel-Chaix, L., Ajamian, L., Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA (2010) J Cell Sci, 123 (PART 3), pp. 369-383 
504 |a Buchan, J.R., Yoon, J.H., Parker, R., Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae (2011) J Cell Sci, 124 (PART 2), pp. 228-239 
504 |a Ling, S.C., Fahrner, P.S., Greenough, W.T., Gelfand, V.I., Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein (2004) Proc Natl Acad Sci USA, 101, pp. 17428-17433 
504 |a Loschi, M., Leishman, C.C., Berardone, N., Boccaccio, G.L., Dynein and kinesin regulate stress-granule and P-body dynamics (2009) J Cell Sci, 122 (PART 21), pp. 3973-3982 
504 |a Nadezhdina, E.S., Lomakin, A.J., Shpilman, A.A., Chudinova, E.M., Ivanov, P.A., Microtubules govern stress granule mobility and dynamics (2010) Biochim Biophys Acta, 1803, pp. 361-371 
504 |a Noble, S.L., Allen, B.L., Goh, L.K., Nordick, K., Evans, T.C., Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development (2008) J Cell Biol, 182, pp. 559-572 
504 |a Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster (1972) J Embryol Exp Morphol, 27, pp. 353-365 
504 |a Yanagawa, S., Lee, J.S., Ishimoto, A., Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling (1998) J Biol Chem, 273, pp. 32353-32359 
504 |a Rogers, S.L., Rogers, G.C., Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy (2008) Nat Protoc, 3, pp. 606-611 
504 |a Ally, S., Larson, A.G., Barlan, K., Rice, S.E., Gelfand, V.I., Oppositepolarity motors activate one another to trigger cargo transport in live cells (2009) J Cell Biol, 187, pp. 1071-1082 
504 |a Bensenor, L.B., Barlan, K., Rice, S.E., Fehon, R.G., Gelfand, V.I., Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants (2010) Proc Natl Acad Sci USA, 107, pp. 7311-7316 
504 |a Jolly, A.L., Kim, H., Srinivasan, D., Lakonishok, M., Larson, A.G., Gelfand, V.I., Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape (2010) Proc Natl Acad Sci USA, 107, pp. 12151-12156 
504 |a Kim, H., Ling, S.C., Rogers, G.C., Microtubule binding by dynactin is required for microtubule organization but not cargo transport (2007) J Cell Biol, 176, pp. 641-651 
504 |a Kuznetsov, S.A., Gelfand, V.I., Bovine brain kinesin is a microtubuleactivated ATPase (1986) Proc Nat Acad Sci USA, 83, pp. 8530-8534 
504 |a Rogers, S.L., Rogers, G.C., Sharp, D.J., Vale, R.D., Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle (2002) J Cell Biol, 158, pp. 873-884 
504 |a Kloc, M., Dougherty, M.T., Bilinski, S., Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus (2002) Dev Biol, 241, pp. 79-93 
504 |a Micklem, D.R., Adams, J., Grunert, S., St. Johnston, D., Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation (2000) Embo J, 19, pp. 1366-1377 
504 |a Yoon, J.H., Choi, E.J., Parker, R., Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae (2010) J Cell Biol, 189, pp. 813-827 
504 |a Nimchinsky, E.A., Oberlander, A.M., Svoboda, K., Abnormal development of dendritic spines in FMR1 knock-out mice (2001) J Neurosci, 21, pp. 5139-5146 
504 |a Didiot, M.C., Subramanian, M., Flatter, E., Mandel, J.L., Moine, H., Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly (2009) Mol Biol Cell, 20, pp. 428-437 
504 |a Thomas, M.G., Tosar, L.J., Desbats, M.A., Leishman, C.C., Boccaccio, G.L., Mammalian Staufen 1 is recruited to stress granules and impairs their assembly (2009) J Cell Sci, 122 (PART 4), pp. 563-573 
504 |a Vessey, J.P., Macchi, P., Stein, J.M., A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis (2008) Proc Natl Acad Sci USA, 105, pp. 16374-16379 
504 |a Zalfa, F., Achsel, T., Bagni, C., mRNPs, polysomes or granules: FMRP in neuronal protein synthesis (2006) Curr Opin Neurobiol, 16, pp. 265-269 
504 |a Anderson, P., Kedersha, N., Stress granules: The Tao of RNA triage (2008) Trends Biochem Sci, 33, pp. 141-150 
504 |a Blumenthal, J., Behar, L., Elliott, E., Ginzburg, I., Dcp1a phosphorylation along neuronal development and stress (2009) FEBS Lett, 583, pp. 197-201 
504 |a Kwon, S., Zhang, Y., Matthias, P., The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response (2007) Genes Dev, 21, pp. 3381-3394 
504 |a Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., Anderson, P., A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly (2008) Nat Cell Biol, 10, pp. 1224-1231 
504 |a Hu, P., Shimoji, S., Hart, G.W., Site-specific interplay between OGlcNAcylation and phosphorylation in cellular regulation (2010) FEBS Lett, 584, pp. 2526-2538 
504 |a Morfini, G.A., You, Y.M., Pollema, S.L., Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin (2009) Nat Neurosci, 12, pp. 864-871 
504 |a Tsai, N.P., Wei, L.N., RhoA/ROCK1 signaling regulates stress granule formation and apoptosis (2010) Cell Signal, 22, pp. 668-675 
504 |a Morfini, G.A., Burns, M., Binder, L.I., Axonal transport defects in neurodegenerative diseases (2009) J Neurosci, 29, pp. 12776-12786 
504 |a Mazroui, R., di Marco, S., Kaufman, R.J., Gallouzi, I.E., Inhibition of the ubiquitin-proteasome system induces stress granule formation (2007) Mol Biol Cell, 18, pp. 2603-2618 
504 |a Soncini, C., Berdo, I., Draetta, G., Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease (2001) Oncogene, 20, pp. 3869-3879 
504 |a Kraft, C., Deplazes, A., Sohrmann, M., Peter, M., Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease (2008) Nat Cell Biol, 10, pp. 602-610 
504 |a Scadden, A.D., Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans (2007) Mol Cell, 28, pp. 491-500 
504 |a Bass, B.L., RNA editing by adenosine deaminases that act on RNA (2002) Annu Rev Biochem, 71, pp. 817-846 
504 |a Blow, M., Futreal, P.A., Wooster, R., Stratton, M.R., A survey of RNA editing in human brain (2004) Genome Res, 14, pp. 2379-2387 
504 |a Levanon, E.Y., Eisenberg, E., Yelin, R., Systematic identification of abundant A-to-I editing sites in the human transcriptome (2004) Nat Biotechnol, 22, pp. 1001-1005 
504 |a Morse, D.P., Aruscavage, P.J., Bass, B.L., RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA (2002) Proc Natl Acad Sci USA, 99, pp. 7906-7911 
504 |a Brouha, B., Schustak, J., Badge, R.M., Hot L1s account for the bulk of retrotransposition in the human population (2003) Proc Natl Acad Sci USA, 100, pp. 5280-5285 
504 |a Jin, P., Zarnescu, D.C., Ceman, S., Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway (2004) Nat Neurosci, 7, pp. 113-117 
504 |a Souquere, S., Mollet, S., Kress, M., Dautry, F., Pierron, G., Weil, D., Unravelling the ultrastructure of stress granules and associated Pbodies in human cells (2009) J Cell Sci, 15-122 (PART 20), pp. 3619-3626 
504 |a Moser, J.J., Eystathioy, T., Chan, E.K., Fritzler, M.J., Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies (2007) J Neurosci Res, 85, pp. 3619-3631 
504 |a Goodier, J.L., Zhang, L., Vetter, M.R., Kazazian Jr., H.H., LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex (2007) Mol Cell Biol, 27, pp. 6469-6483 
504 |a Gibbings, D., Voinnet, O., Control of RNA silencing and localization by endolysosomes (2010) Trends Cell Biol, 20, pp. 491-501 
504 |a Pepper, A.S., Beerman, R.W., Bhogal, B., Jongens, T.A., Argonaute2 suppresses Drosophila fragile X expression preventing neurogenesis and oogenesis defects (2009) PLoS One, 4, pp. e7618 
504 |a Wang, H.W., Noland, C., Siridechadilok, B., Structural insights into RNA processing by the human RISC-loading complex (2009) Nat Struct Mol Biol, 16, pp. 1148-1153 
504 |a Kedersha, N., Chen, S., Gilks, N., Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules (2002) Mol Biol Cell, 13, pp. 195-210 
504 |a Kedersha, N., Stoecklin, G., Ayodele, M., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling (2005) J Cell Biol, 169, pp. 871-884 
504 |a Young, J.C., Barral, J.M., Ulrich Hartl, F., More than folding: Localized functions of cytosolic chaperones (2003) Trends Biochem Sci, 28, pp. 541-547 
504 |a Tourriere, H., Chebli, K., Zekri, L., The RasGAP-associated endoribonuclease G3BP assembles stress granules (2003) J Cell Biol, 160, pp. 823-831 
504 |a Schubert, U., Anton, L.C., Gibbs, J., Norbury, C.C., Yewdell, J.W., Bennink, J.R., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes (2000) Nature, 404, pp. 770-774 
504 |a Ellgaard, L., Helenius, A., ER quality control: Towards an understanding at the molecular level (2001) Curr Opin Cell Biol, 13, pp. 431-437 
504 |a Imai, J., Yashiroda, H., Maruya, M., Yahara, I., Tanaka, K., Proteasomes and molecular chaperones: Cellular machinery responsible for folding and destruction of unfolded proteins (2003) Cell Cycle, 2, pp. 585-590 
504 |a Rock, K.L., Gramm, C., Rothstein, L., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules (1994) Cell, 78, pp. 761-771 
504 |a Wojcik, C., de Martino, G.N., Intracellular localization of proteasomes (2003) Int J Biochem Cell Biol, 35, pp. 579-589 
504 |a Wojcik, C., Schroeter, D., Stoehr, M., Wilk, S., Paweletz, N., An inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces arrest in G2-phase and metaphase in HeLa cells (1996) Eur J Cell Biol, 70, pp. 172-178 
504 |a Johnston, J.A., Dalton, M.J., Gurney, M.E., Kopito, R.R., Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis (2000) Proc Natl Acad Sci USA, 97, pp. 12571-12576 
504 |a Kristiansen, M., Messenger, M.J., Klohn, P.C., Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis (2005) J Biol Chem, 280, pp. 38851-38861 
504 |a McNaught, K.S., Mytilineou, C., Jnobaptiste, R., Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures (2002) J Neurochem, 81, pp. 301-306 
504 |a Olanow, C.W., Perl, D.P., de Martino, G.N., McNaught, K.S., Lewy-body formation is an aggresome-related process: A hypothesis (2004) Lancet Neurol, 3, pp. 496-503 
504 |a Beaudoin, S., Goggin, K., Bissonnette, C., Grenier, C., Roucou, X., Aggresomes do not represent a general cellular response to protein misfolding in mammalian cells (2008) BMC Cell Biol, 9, p. 59 
504 |a Kakizuka, A., Protein precipitation: A common etiology in neurodegenerative disorders? (1998) Trends Genet, 14, pp. 396-402 
504 |a Ross, C.A., Poirier, M.A., Protein aggregation and neurodegenerative disease (2004) Nat Med, 10 (SUPPL), pp. S10-7 
504 |a Soto, C., Unfolding the role of protein misfolding in neurodegenerative diseases (2003) Nat Rev Neurosci, 4, pp. 49-60 
504 |a Thomas, M.G., Martinez Tosar, L.J., Loschi, M., Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes (2005) Mol Biol Cell, 16, pp. 405-420 
504 |a Fujimura, K., Katahira, J., Kano, F., Yoneda, Y., Murata, M., Microscopic dissection of the process of stress granule assembly (2009) Biochim Biophys Acta, 1793, pp. 1728-1737 
504 |a Ivanov, P.A., Chudinova, E.M., Nadezhdina, E.S., Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation (2003) Exp Cell Res, 290, pp. 227-233 
504 |a Kolobova, E., Efimov, A., Kaverina, I., Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules (2009) Exp Cell Res, 315, pp. 542-555 
504 |a Kedersha, N., Cho, M.R., Li, W., Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules (2000) J Cell Biol, 151, pp. 1257-1268 
504 |a Tsai, N.P., Tsui, Y.C., Wei, L.N., Dynein motor contributes to stress granule dynamics in primary neurons (2009) Neuroscience, 159, pp. 647-656 
504 |a Hasek, J., Kovarik, P., Valasek, L., Rpg1p, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubuleinteracting protein (2000) Cell Motil Cytoskeleton, 45, pp. 235-246 
504 |a de Boer, S.R., You, Y., Szodorai, A., Conventional kinesin holoenzymes are composed of heavy and light chain homodimers (2008) Biochemistry, 47, pp. 4535-4543 
504 |a Vale, R.D., The molecular motor toolbox for intracellular transport (2003) Cell, 112, pp. 467-480 
504 |a Morfini, G., Pigino, G., Opalach, K., 1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C (2007) Proc Natl Acad Sci USA, 104, pp. 2442-2447 
504 |a Prusiner, S.B., Hsiao, K.K., Human prion diseases (1994) Ann Neurol, 35, pp. 385-395 
504 |a Perutz, M.F., Amyloid fibrils. Mutations make enzyme polymerize (1997) Nature, 385, pp. 773-775 
504 |a Burakov, A., Kovalenko, O., Semenova, I., Zhapparova, O., Nadezhdina, E., Rodionov, V., Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells (2008) Traffic, 9, pp. 472-480 
504 |a Deacon, S.W., Serpinskaya, A.S., Vaughan, P.S., Dynactin is required for bidirectional organelle transport (2003) J Cell Biol, 160, pp. 297-301 
504 |a Johnston, J.A., Illing, M.E., Kopito, R.R., Cytoplasmic dynein/dynactin mediates the assembly of aggresomes (2002) Cell Motil Cytoskeleton, 53, pp. 26-38 
504 |a Munch, C., Sedlmeier, R., Meyer, T., Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS (2004) Neurology, 63, pp. 724-726 
504 |a Munch, C., Rosenbohm, A., Sperfeld, A.D., Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD (2005) Ann Neurol, 58, pp. 777-780 
504 |a Hafezparast, M., Klocke, R., Ruhrberg, C., Mutations in dynein link motor neuron degeneration to defects in retrograde transport (2003) Science, 300, pp. 808-812 
504 |a la Monte, B.H., Wallace, K.E., Holloway, B.A., Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration (2002) Neuron, 34, pp. 715-727 
504 |a Iwata, A., Riley, B.E., Johnston, J.A., Kopito, R.R., HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin (2005) J Biol Chem, 280, pp. 40282-40292 
504 |a Wang, L., Nguyen, T.V., McLaughlin, R.W., Sikkink, L.A., Ramirez-Alvarado, M., Weinshilboum, R.M., Human thiopurine Smethyltransferase pharmacogenetics: Variant allozyme misfolding and aggresome formation (2005) Proc Natl Acad Sci USA, 102, pp. 9394-9399 
504 |a Kawaguchi, Y., Kovacs, J.J., McLaurin, A., Vance, J.M., Ito, A., Yao, T.P., The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress (2003) Cell, 115, pp. 727-738 
504 |a Hideshima, T., Bradner, J.E., Chauhan, D., Anderson, K.C., Intracellular protein degradation and its therapeutic implications (2005) Clin Cancer Res, 11 (24 PART 1), pp. 8530-8533 
504 |a Dompierre, J.P., Godin, J.D., Charrin, B.C., Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation (2007) J Neurosci, 27, pp. 3571-3583 
504 |a Reed, N.A., Cai, D., Blasius, T.L., Microtubule acetylation promotes kinesin-1 binding and transport (2006) Curr Biol, 16, pp. 2166-2172 
504 |a Williams, A.J., Paulson, H.L., Polyglutamine neurodegeneration: Protein misfolding revisited (2008) Trends Neurosci, 31, pp. 521-528 
504 |a Lee, H.J., Lee, S.J., Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusionforming process in cells (2002) J Biol Chem, 277, pp. 48976-48983 
504 |a Shin, Y., Klucken, J., Patterson, C., Hyman, B.T., McLean, P.J., The cochaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways (2005) J Biol Chem, 280, pp. 23727-23734 
504 |a Ardley, H.C., Scott, G.B., Rose, S.A., Tan, N.G., Robinson, P.A., UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease (2004) J Neurochem, 90, pp. 379-391 
504 |a Neumann, M., Sampathu, D.M., Kwong, L.K., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2006) Science, 314, pp. 130-133 
504 |a Perry, G., Friedman, R., Kang, D.H., Manetto, V., Autilio-Gambetti, L., Gambetti, P., Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions (1987) Brain Res., 420, pp. 233-242 
504 |a Rujano, M.A., Bosveld, F., Salomons, F.A., Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes (2006) PLoS Biol, 4, pp. e417 
504 |a Arai, T., Hasegawa, M., Akiyama, H., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2006) Biochem Biophys Res Commun, 351, pp. 602-611 
504 |a Buratti, E., Baralle, F.E., The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation (2010) RNA Biol, 7, pp. 420-429 
504 |a Hasegawa, M., Arai, T., Nonaka, T., Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis (2008) Ann Neurol, 64, pp. 60-70 
504 |a Zhang, Y.J., Xu, Y.F., Dickey, C.A., Progranulin mediates caspasedependent cleavage of TAR DNA binding protein-43 (2007) J Neurosci, 27, pp. 10530-10534 
504 |a Zhang, Y.J., Xu, Y.F., Cook, C., Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity (2009) Proc Natl Acad Sci USA, 106, pp. 7607-7612 
504 |a Colombrita, C., Zennaro, E., Fallini, C., TDP-43 is recruited to stress granules in conditions of oxidative insult (2009) J Neurochem, 111, pp. 1051-1061 
504 |a Nishimoto, Y., Ito, D., Yagi, T., Nihei, Y., Tsunoda, Y., Suzuki, N., Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43 (2010) J Biol Chem, 285, pp. 608-619 
504 |a Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., Strong, M.J., Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) (2009) Brain Res, 1305, pp. 168-182 
504 |a Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., Tar DNA binding protein-43 (TDP-43) associates with stress granules: Analysis of cultured cells and pathological brain tissue (2010) PLoS One, 5, pp. e13250 
504 |a Hubbert, C., Guardiola, A., Shao, R., HDAC6 is a microtubuleassociated deacetylase (2002) Nature, 417, pp. 455-458 
504 |a Matsuyama, A., Shimazu, T., Sumida, Y., In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation (2002) Embo J, 21, pp. 6820-6831 
504 |a Iliev, A.I., Djannatian, J.R., Opazo, F., Rapid microtubule bundling and stabilization by the Streptococcus pneumoniae neurotoxin pneumolysin in a cholesterol-dependent, non-lytic and Srckinase dependent manner inhibits intracellular trafficking (2009) Mol Microbiol, 71, pp. 461-477 
504 |a Tonami, K., Kurihara, Y., Aburatani, H., Uchijima, Y., Asano, T., Kurihara, H., Calpain 6 is involved in microtubule stabilization and cytoskeletal organization (2007) Mol Cell Biol, 27, pp. 2548-2561 
504 |a Gao, Y.S., Hubbert, C.C., Yao, T.P., The microtubule-associated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation J Biol Chem, 285, pp. 11219-11226 
504 |a Pugacheva, E.N., Jablonski, S.A., Hartman, T.R., Henske, E.P., Golemis, E.A., HEF1-dependent Aurora A activation induces disassembly of the primary cilium (2007) Cell, 129, pp. 1351-1363 
504 |a Naranatt, P.P., Krishnan, H.H., Smith, M.S., Chandran, B., Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus (2005) J Virol, 79, pp. 1191-1206 
504 |a Warren, J.C., Rutkowski, A., Cassimeris, L., Infection with replicationdeficient adenovirus induces changes in the dynamic instability of host cell microtubules (2006) Mol Biol Cell, 17, pp. 3557-3568 
504 |a Gitcho, M.A., Baloh, R.H., Chakraverty, S., TDP-43 A315T mutation in familial motor neuron disease (2008) Ann Neurol, 63, pp. 535-538 
504 |a van Deerlin, V.M., Leverenz, J.B., Bekris, L.M., TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: A genetic and histopathological analysis (2008) Lancet Neurol, 7, pp. 409-416 
504 |a Sreedharan, J., Blair, I.P., Tripathi, V.B., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis (2008) Science, 319, pp. 1668-1672 
504 |a Rutherford, N.J., Zhang, Y.J., Baker, M., Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis (2008) PLoS Genet, 4, pp. e1000193 
504 |a Kabashi, E., Daoud, H., Riviere, J.B., No TARDBP mutations in a French Canadian population of patients with Parkinson disease (2009) Arch Neurol, 66, pp. 281-282 
504 |a Yokoseki, A., Shiga, A., Tan, C.F., TDP-43 mutation in familial amyotrophic lateral sclerosis (2008) Ann Neurol, 63, pp. 538-542 
504 |a Arai, T., Ikeda, K., Akiyama, H., Identification of aminoterminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration (2004) Ann Neurol, 55, pp. 72-79 
504 |a di Figlia, M., Sapp, E., Chase, K.O., Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain (1997) Science, 277, pp. 1990-1993 
504 |a Mende-Mueller, L.M., Toneff, T., Hwang, S.R., Chesselet, M.F., Hook, V.Y., Tissue-specific proteolysis of Huntingtin (htt) in human brain: Evidence of enhanced levels of N-and C-terminal htt fragments in Huntington's disease striatum (2001) J Neurosci, 21, pp. 1830-1837 
504 |a Selkoe, D.J., Yamazaki, T., Citron, M., The role of APP processing and trafficking pathways in the formation of amyloid betaprotein (1996) Ann N Y Acad Sci, 777, pp. 57-64 
504 |a Sisodia, S.S., Price, D.L., Role of the beta-amyloid protein in Alzheimer's disease (1995) Faseb J, 9, pp. 366-370 
504 |a Dekanty, A., Romero, N.M., Bertolin, A.P., Drosophila genomewide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia (2010) PLoS Genet, 6, pp. e1000994 
520 3 |a Control of protein synthesis and quality are critical steps to support eukaryotic cells' maintenance and survival. Two very distinctive mechanisms emerge as key checkpoints of protein synthesis regulation. The first one is the delivery of mRNA molecules, packed into ribonucleoprotein (mRNP) granules, to specific subcellular regions in order to restrict protein synthesis to distinct cytoplasmic domains. In the presence of cellular stress or injury, translation is aborted by sequestering mRNA molecules into a sub-type of RNP particles called stress granules (SGs). The second mechanism deals with the folding state and further processing of synthesized proteins. Misbehavior of a particular protein, affecting its processing, functioning, and/or conformation can cause the formation of protein inclusions called aggresomes. Interestingly, self-aggregation of abnormal proteins is one of the leading causes of neurodegenerative disorders. Recently, intracellular transport directed by microtubule-motors, has emerged as an important step in the assembly and dynamic of SGs and aggresomes. This mechanism allows for a precise temporal and spatial trafficking of RNA and protein complexes. Furthermore, it facilitates the regulation of the RNA silencing domains and targets abnormal protein aggregates for degradation. In this review we will explore the specific and common features of mRNA transport and of SG and aggresome formation, and will provide details on the role of the microtubule network and motors in their movement and dynamics. © 2011 Bentham Science Publishers Ltd.  |l eng 
593 |a Instituto Leloir, Avenida Patricias Argentinas 435, C1405BWE-Buenos Aires, Argentina 
593 |a IIBBA CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina 
593 |a IIBBA-CONICET, C1405BWE-Buenos Aires, Argentina 
690 1 0 |a ABNORMAL PROTEIN AGGREGATES 
690 1 0 |a AGGRESOME 
690 1 0 |a CELL STRESS 
690 1 0 |a CYTOSKELETON 
690 1 0 |a DYNEIN 
690 1 0 |a KINESIN 
690 1 0 |a RNP 
690 1 0 |a STRESS GRANULES 
690 1 0 |a RIBONUCLEOPROTEIN 
690 1 0 |a AGGRESOME 
690 1 0 |a CELL DAMAGE 
690 1 0 |a CELL STRESS 
690 1 0 |a CELL SURVIVAL 
690 1 0 |a DEGENERATIVE DISEASE 
690 1 0 |a EUKARYOTIC CELL 
690 1 0 |a GENE SILENCING 
690 1 0 |a HUMAN 
690 1 0 |a MICROTUBULE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN AGGREGATION 
690 1 0 |a PROTEIN CONFORMATION 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a PROTEIN SYNTHESIS 
690 1 0 |a REVIEW 
690 1 0 |a RNA TRANSLATION 
690 1 0 |a RNA TRANSPORT 
690 1 0 |a STRESS GRANULE 
690 1 0 |a EUKARYOTA 
700 1 |a Vazquez, M.S. 
700 1 |a Boccaccio, G.L. 
773 0 |d Bentham Science Publishers B.V., 2011  |g v. 5  |h pp. 77-89  |k n. 2  |p Curr. Chem. Biol.  |x 18723136  |t Current Chemical Biology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79953834159&doi=10.2174%2f187231311795243373&partnerID=40&md5=dc784b22664735920419fdb03e3f33ad  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2174/187231311795243373  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_18723136_v5_n2_p77_Bensenor  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18723136_v5_n2_p77_Bensenor  |y Registro en la Biblioteca Digital 
961 |a paper_18723136_v5_n2_p77_Bensenor  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 71576