Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve

Intertidal blue mussels, Mytilus edulis, experience hypoxia reoxygenation during tidal emersion and resubmersion cycles, and this is often suggested to represent a major stress for the animals, especially for their respiratory tissues, the gills. We exposed mussels to experimental short and prolonge...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rivera-Ingraham, G.A
Otros Autores: Rocchetta, I., Meyer, S., Abele, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier Ltd 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16248caa a22018617a 4500
001 PAPER-11113
003 AR-BaUEN
005 20230518204113.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84887233285 
024 7 |2 cas  |a caspase, 186322-81-6; catalase, 9001-05-2; glutathione, 70-18-8; hydrogen peroxide, 7722-84-1; succinic acid, 110-15-6; superoxide, 11062-77-4; superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a MERSD 
100 1 |a Rivera-Ingraham, G.A. 
245 1 0 |a Oxygen radical formation in anoxic transgression and anoxia-reoxygenation: Foe or phantom? Experiments with a hypoxia tolerant bivalve 
260 |b Elsevier Ltd  |c 2013 
270 1 0 |m Abele, D.; Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; email: Doris.Abele@awi.de 
506 |2 openaire  |e Política editorial 
504 |a Abele-Oeschger, D., Oeschger, R., Hypoxia induced autoxidation of haemoglobin in the benthic invertebrates Arenicola marina (Polychaeta) and Astarte borealis (Bivalvia): possible effect of hydrogen sulphide (1995) J.Exp. Mar. Biol. Ecol., 187, pp. 63-80 
504 |a Abele, D., Brey, T., Philipp, E.E.R., Bivalve models of aging and the determination of molluscan lifespans (2009) Exp. Gerontol., 44, pp. 307-315 
504 |a Abele, D., Heise, K., Pörtner, H.O., Puntarulo, S., Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria (2002) J.Exp. Biol., 205, pp. 1831-1841 
504 |a Abele, D., Philipp, E., Gonzalez, P., Puntarulo, S., Marine invertebrate mitochondria and oxidative stress (2007) Front. Biochem., 12, pp. 933-946 
504 |a Aebi, H., Catalase invitro (1984) Methods Enzymol., 105, pp. 121-126 
504 |a Aiello, E., Guideri, G., Distribution and function of the branchial nerve in the mussel (1965) Biol. Bull., 129, pp. 431-438 
504 |a Almeida, E., Bainy, A.C.D., Effects of aerial exposure on antioxidant defenses in the brown mussel Perna perna (2006) Braz. Arch. Biol. Technol., 49, pp. 225-229 
504 |a Almeida, E., Silva, D.G.H., Dias Bainy, A.C., Porto Freitas, F., Motta, F.D., Gomez, O.F., Gennari de Medeiros, M.H., Di Mascio, P., Evaluation of glutathione status in aquatic organisms (2012) Oxidative Stress in Aquatic Environments, pp. 381-388. , Wiley-Blackwell, Oxford, D. Abele, J.P. Vázquez-Media, T. Zenteno-Savín (Eds.) 
504 |a Bayne, B.L., Ventilation, the heart beat and oxygen uptake by Mytilus edulis L. in declining oxygen tension (1971) Comp. Biochem. Physiol. Part A Physiol., 40, pp. 1065-1085 
504 |a Bayne, B.L., Thompson, R.J., Widdows, J., Physiology 1 (1976) Marine Mussels. Their Ecology and Physiology, pp. 121-206. , Cambridge University Press, Cambridge, B.L. Bayne (Ed.) 
504 |a Bonini, M.G., Rota, C., Tomasi, A., Mason, R.P., The oxidation of 2',7'-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? (2006) Free Radic. Biol. Med., 40, pp. 968-975 
504 |a Bradford, M.M., Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254 
504 |a Carballal, M., López, C., Azevedo, C., Villalba, A., Enzymes involved in defense functions of hemocytes of Mussel Mytilus galloprovincialis (1997) J.Invertebr. Pathol., 70, pp. 96-105 
504 |a Dikkeboom, R., Tijnagel, J.M.G.H., Mulder, E.C., van der Knaap, W.P.W., Hemocytes of the pond snail Lymnaea stagnalis generate reactive forms of oxygen (1987) J.Invertebr. Pathol., 49, pp. 321-331 
504 |a Duggleby, R.G., Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program (1984) Comput. Biol. Med., 14, pp. 447-455 
504 |a Gosling, E., (2003) Bivalve Molluscs. BIology, Ecology and Culture, , Blackwell, Oxford 
504 |a Herreid, C.F.I., Hypoxia in invertebrates (1980) Comp. Biochem. Physiol. Part A Physiol., 67, pp. 311-320 
504 |a Holwerda, D.A., De Zwaan, A., On the role of fumarate reductase in anaerobic carbohydrate catabolism of Mytilus edulis L (1980) Comp. Biochem. Physiol. Part B Comp. Biochem., 67, pp. 447-453 
504 |a Husmann, G., Philipp, E.E.R., Rosenstiel, P., Vázquez, S., Abele, D., Immune response of the Antarctic bivalve Laternula elliptica to physical stress and microbial exposure (2011) J.Exp. Biol. Ecol., 398, pp. 83-90 
504 |a Irato, P., Piccinni, E., Cassini, A., Santovito, G., Antioxidant responses to variations in dissolved oxygen of Scapharca inaequivalvis and Tapes philippinarum, two bivalve species from the lagoon of Venice (2007) Mar. Pollut. Bull., 54, pp. 1020-1030 
504 |a Letendre, J., Chouquet, B., Manduzio, H., Marin, M., Bultelle, F., Leboulenger, F., Durand, F., Tidal height influences the levels of enzymatic antioxidant defences in Mytilus edulis (2009) Mar. Environ. Res., 67, pp. 69-74 
504 |a Li, C., Jackson, R.M., Reactive species mechanisms of cellular hypoxia-reoxygenation injury (2002) Am. J. Physiol. Cell Physiol., 282, pp. C227-C241 
504 |a Li, J., Bombeck, C.A., Yang, S., Kim, Y.-M., Billiar, T.R., Nitric oxide supresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes (1999) J.Biol. Chem., 274, pp. 17325-17333 
504 |a Livingstone, D.R., Lips, F., Garcia Martinez, P., Pipe, R.K., Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis (1992) Mar. Biol., 112, pp. 265-276 
504 |a Mannick, J.B., Miao, X.Q., Stamler, J.S., Nitric oxide inhibits Fas-induced apoptosis (1997) J.Biol. Chem., 272, pp. 24125-24128 
504 |a Massabuau, J., Abele, D., Principles of oxygen uptake and tissue oxygenation in water-breathing animals (2012) Oxidative Stress in Aquatic Ecosystems, pp. 141-156. , Wiley-Blackwell, Chichester, West Sussex, D. Abele, J.P. Vázques-Medina, T. Zenteno- Savín (Eds.) 
504 |a Pamatmat, M.M., Facultative anaerobiosis of benthos (1980) Marine Benthic Dynamics, pp. 65-90. , University of South Carolina Press, Columbia, K.R. Tenore, B.C. Coull (Eds.) 
504 |a Pamplona, R., Costantini, D., Molecular and structural antioxidant defenses against oxidative stress in animals (2011) Am. J. Physiol., 301, pp. 843-863 
504 |a Pannunzio, T.M., Storey, K.B., Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea (1998) J.Exp. Mar. Biol. Ecol., 221, pp. 277-292 
504 |a Radi, R., Cassina, A., Hodara, R., Quijano, C., Castro, L., Peroxynitrite reactions and formation in mitochondria (2002) Free Radic. Biol. Med., 33, pp. 1451-1464 
504 |a Rivera-Ingraham, G.A., Bickmeyer, U., Abele, D., The physiological response of the marine platyhelminth Macrostomum lignano to different environmental oxygen concentrations (2013) J.Exp. Biol., 216, pp. 2741-2751 
504 |a Sheldon, F., Walker, K.F., Effects of hypoxia on oxygen consumption by two species of freshwater mussel (Unionacea: Hyriidae) from the Rivera Murray (1989) Aust. J. Mar. Freshw. Res., 40, pp. 491-499 
504 |a Sprung, M., Reproduction and fecundity of the mussel Mytilus edulis at Helgoland (North Sea) (1983) Helgol. Meeresunters., 36, pp. 243-255 
504 |a Strahl, J., Abele, D., Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis (2010) Mar. Biol. (Berl.), 157, pp. 1283-1292 
504 |a Strahl, J., Brey, T., Philipp, E.E.R., Thorarinsdottir, G., Fischer, N., Wessels, W., Abele, D., Physiological responses to self-induced burrowing and metabolic rate depression in the ocean quahog Arctica islandica (2011) J.Exp. Biol., 214, pp. 4221-4231 
504 |a Tarpey, M.M., Wink, D.A., Grisham, M.B., Methods for detection of reactive metabolites of oxygen and nitrogen: invitro and invivo considerations (2004) Am. J. Physiol., 286, pp. 431-444 
504 |a Uchiyama, M., Mihara, M., Determination of malondialdehyde precursor in tissues by thiobarbituric acid test (1978) Anal. Biochem., 86, pp. 271-278 
504 |a Van Winkle, W.J., The effects of season, temperature and salinity on the oxygen consumption of bivalve gill tissue (1968) Comp. Biochem. Physiol., 26, pp. 69-80 
504 |a Viarengo, A., Pertica, M., Canesi, L., Accomando, R., Mancinelli, G., Orunesu, M., Lipid peroxidation and level of antioxidant compounds (GSH, vitamin E) in the digestive glands of mussels of three different age groups exposed to anaerobic and aerobic conditions (1989) Mar. Environ. Res., 28, pp. 291-295 
504 |a Wang, W.X., Widdows, J., Metabolic response of the common mussel Mytilus edulis to hypoxia and anoxia (1993) Mar. Ecol. Prog. Ser., 95, pp. 205-214 
504 |a Wang, X.L., Widdows, J., Page, D.S., Effects of organic toxicants on the anoxia energy metabolism of the mussel Mytilus edulis (1992) Mar. Environ. Res., 34, pp. 327-331 
504 |a Welker, A.F., Moreira, D.C., Campos, E.G., Hermes-Lima, M., Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability (2013) Comp. Biochemistry and Physiol. Part A Physiol. 
504 |a Zandee, D.I., Holwerda, D.A., Kluytmans, J.H., De Zwaan, A., Metabolic adaptations to the environmental anoxia in the intertidal bivalve mollusc Mytilus edulis L. (1986) Neth. J. Zool., 36, pp. 322-343 
504 |a Zurburg, W., Kluytmans, J.H., Organ specific changes in energy metabolism due to anaerobiosis in the sea mussel Mytilus edulis (L.) (1980) Comp. Biochem. Physiol. Part B Comp. Biochem., 67, pp. 317-322 
520 3 |a Intertidal blue mussels, Mytilus edulis, experience hypoxia reoxygenation during tidal emersion and resubmersion cycles, and this is often suggested to represent a major stress for the animals, especially for their respiratory tissues, the gills. We exposed mussels to experimental short and prolonged anoxia and subsequent reoxygenation and analyzed the respiratory response in excised gill tissue and the effects of treatment on reactive oxygen species (mainly ROS: superoxide anion, O2·- and hydrogen peroxide, H2O2), formation using live imaging techniques and confocal microscopy. Our aim was to understand if this "natural stress" would indeed produce oxidative damage and whether antioxidant defenses are induced under anoxia, to prevent oxidative damage during reoxygenation. Exposure to declining pO2 in the respiration chamber caused an increase of gill metabolic rate between 21 and 10kPa, a pO2 range in which whole animal respiration is reported to be oxyregulating. Exposure of the animals to severe anoxia caused an onset of anaerobiosis (succinate accumulation) and shifted high and low critical pc values (pc1: onset of oxyregulation in gills, pc2: switch from oxyregulation to oxyconformity) to higher pO2. Concentrations of both ROS decreased strongly during anoxic exposure of the mussels and increased upon reoxygenation. This ROS burst induced lipid peroxidation in the mantle, but neither were protein carbonyl levels increased (oxidative damage in the protein fraction), nor did the tissue glutathione concentration change in the gills. Further, analysis of apoptosis markers indicated no induction of cell death in the gills. To our knowledge, this is the first paper that directly measures ROS formation during anoxia reoxygenation in mussels. We conclude that hypoxia tolerant intertidal mussels do not suffer major oxidative stress in gill and mantle tissues under these experimental conditions. © 2013 Elsevier Ltd.  |l eng 
536 |a Detalles de la financiación: Fundación Ramón Areces 
536 |a Detalles de la financiación: Alexander von Humboldt-Stiftung 
536 |a Detalles de la financiación: The authors would like to thank Birgit Hussel from Sylt Marine Station for providing Mytilus edulis and Imke Lüdeke for excellent assistance with the biochemical analyses. Additional thanks go to three anonymous referees for their valuable comments on the original manuscript. This study was partially funded by the Humboldt Foundation (Germany) and the Fundación Ramón Areces (Spain) through grants awarded to I. Rocchetta and G. A. Rivera-Ingraham, respectively. Appendix A 
593 |a Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 
593 |a Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a BLUE MUSSEL 
690 1 0 |a LIVE IMAGING 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a REOXYGENATION 
690 1 0 |a ANIMALS 
690 1 0 |a CELL DEATH 
690 1 0 |a HISTOLOGY 
690 1 0 |a IMAGING TECHNIQUES 
690 1 0 |a METABOLISM 
690 1 0 |a MOLLUSCS 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a OXYGEN 
690 1 0 |a PROTEINS 
690 1 0 |a TISSUE 
690 1 0 |a ANTIOXIDANT DEFENSE 
690 1 0 |a BLUE MUSSELS 
690 1 0 |a EXPERIMENTAL CONDITIONS 
690 1 0 |a GLUTATHIONE CONCENTRATION 
690 1 0 |a LIVE IMAGING 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a REOXYGENATION 
690 1 0 |a RESPIRATORY RESPONSE 
690 1 0 |a TISSUE ENGINEERING 
690 1 0 |a CASPASE 
690 1 0 |a CATALASE 
690 1 0 |a GLUTATHIONE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a OXYGEN RADICAL 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a SUCCINIC ACID 
690 1 0 |a SUPEROXIDE 
690 1 0 |a SUPEROXIDE DISMUTASE 
690 1 0 |a APOPTOSIS 
690 1 0 |a BIVALVE 
690 1 0 |a HYPOXIA 
690 1 0 |a IMAGING METHOD 
690 1 0 |a OXYGEN 
690 1 0 |a OXYGENATION 
690 1 0 |a RESPIRATION 
690 1 0 |a ANAEROBIC GROWTH 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ANOXIA 
690 1 0 |a ARTICLE 
690 1 0 |a CONFOCAL MICROSCOPY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a GILL 
690 1 0 |a HYPOXIA 
690 1 0 |a INTERTIDAL SPECIES 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a METABOLIC RATE 
690 1 0 |a MYTILUS EDULIS 
690 1 0 |a NONHUMAN 
690 1 0 |a OXIDATION REDUCTION STATE 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a OXYGEN TENSION 
690 1 0 |a PROTEIN CARBONYLATION 
690 1 0 |a REOXYGENATION 
690 1 0 |a ANIMALIA 
690 1 0 |a BIVALVIA 
690 1 0 |a MYTILUS EDULIS 
690 1 0 |a BLUE MUSSEL 
690 1 0 |a LIVE IMAGING 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a REOXYGENATION 
690 1 0 |a ANIMALS 
690 1 0 |a ANOXIA 
690 1 0 |a ANTIOXIDANTS 
690 1 0 |a CASPASES 
690 1 0 |a GILLS 
690 1 0 |a GLUTATHIONE 
690 1 0 |a HYDROGEN PEROXIDE 
690 1 0 |a LIPID PEROXIDATION 
690 1 0 |a MYTILUS EDULIS 
690 1 0 |a OXIDATIVE STRESS 
690 1 0 |a OXYGEN 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a SUCCINATES 
690 1 0 |a SUPEROXIDES 
700 1 |a Rocchetta, I. 
700 1 |a Meyer, S. 
700 1 |a Abele, D. 
773 0 |d Elsevier Ltd, 2013  |g v. 92  |h pp. 110-119  |p Mar. Environ. Res.  |x 01411136  |w (AR-BaUEN)CENRE-6015  |t Marine Environmental Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887233285&doi=10.1016%2fj.marenvres.2013.09.007&partnerID=40&md5=155a7b799d44f54b9eed2e292b555991  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.marenvres.2013.09.007  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01411136_v92_n_p110_RiveraIngraham  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01411136_v92_n_p110_RiveraIngraham  |y Registro en la Biblioteca Digital 
961 |a paper_01411136_v92_n_p110_RiveraIngraham  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72066