Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1

In the present study, the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Torres, N.I
Otros Autores: Noll, K.S, Xu, S., Li, J., Huang, Q., Sinko, P.J, Wachsman, M.B, Chikindas, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16215caa a22016097a 4500
001 PAPER-11817
003 AR-BaUEN
005 20230518204201.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84874284256 
024 7 |2 cas  |a aciclovir, 59277-89-3; foscarnet, 4428-95-9; polyvinyl alcohol, 37380-95-3, 9002-89-5 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Torres, N.I. 
245 1 0 |a Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1 
260 |c 2013 
270 1 0 |m Chikindas, M. L.; School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, NB, NJ, 08901, United States; email: tchikindas@aesop.rutgers.edu 
506 |2 openaire  |e Política editorial 
504 |a Abriouel, H., Franz, C., Ben Omar, N., Galvez, A., Diversity and applications of Bacillus bacteriocins (2011) FEMS Microbiol Rev, 35, pp. 201-232 
504 |a Albiol Matanic, V., Castilla, V., Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus (2004) Int J Antimicrob Agents, 23, pp. 382-389 
504 |a Andersen, J., Osbakk, S., Vorland, L., Traavik, T., Gutteberg, T., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts (2001) Antiviral Res, 51, pp. 141-149 
504 |a Azwa, A., Barton, S., Aspects of herpes simplex virus: a clinical review (2009) J Fam Plann Reprod Health Care, 35, pp. 237-242 
504 |a Babasaki, K., Takao, T., Shimonishi, Y., Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis (1985) J Biochem, 98, pp. 585-603 
504 |a Baghian, A., Kousouglas, K., Role of the Na+ K+ pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn 1 mutation to syn+ (wild-type) phenotype (1993) Virology, 196, pp. 548-556 
504 |a Balla, E., Dicks, L., Du Toit, M., Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecium BFE 1071 (2000) Appl Environ Microbiol, 66, pp. 1298-1304 
504 |a Belaid, A., Aouni, M., Khelifa, R., Trabelsi, A., Jemmali, M., Hani, K., In vitro antiviral activity of dermaseptins against herpes simplex virus type 1 (2002) J Med Virol, 66, pp. 229-234 
504 |a Berger, J., Houff, S., Neurological complications of herpes simplex virus type 2 infection (2008) Arch Neurol, 65, pp. 596-600 
504 |a Celum, C., Wald, A., Lingappa, J., Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2 (2010) N Engl J Med, 362, pp. 427-439 
504 |a Chilukuri, S., Rosen, T., Management of acyclovir-resistant herpes simplex virus (2003) Dermatol Clin, 21, pp. 311-320 
504 |a Choong, K., Walker, N., Apel, A., Whitby, M., Aciclovir-resistant herpes keratitis (2010) Clin Experiment Ophthalmol, 38, pp. 309-313 
504 |a Cintas, L., Rodriguez, J., Fernandez, M., Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum (1995) Appl Environ Microbiol, 61, pp. 2643-2648 
504 |a Daher, K., Selsted, M., Lehrer, R., Direct inactivation of viruses by human granulocyte defensins (1986) J Virol, 60, pp. 1068-1074 
504 |a Denizot, F., Lang, R., Rapid colorimetric assay for cell growth and survival (1986) J Inmunol Methods, 89, pp. 271-277 
504 |a Duan, B., Yuan, X., Zhu, Y., A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning (2006) Eur Polymer J, 42, pp. 2013-2022 
504 |a Efstathiou, S., Preston, C., Towards an understanding of the molecular basis of herpes simplex virus latency (2005) Virus Res, 111, pp. 108-119 
504 |a Fatahzadeh, M., Schwartz, R., Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management (2007) J Am Acad Dermatol, 57, pp. 737-763 
504 |a Field, H., Herpes simplex virus antiviral drug resistance-current trends and future prospects (2001) J Clin Virol, 21, pp. 261-269 
504 |a Frasch, H., Dotson, G., Barbero, A., In vitro human epidermal penetration of 1-bromopropane (2011) J Toxicol Environ Health A, 74, pp. 1249-1260 
504 |a Gupta, R., Warren, T., Wald, A., Genital herpes (2007) Lancet, 370, pp. 2127-2137 
504 |a Håvard, J., Therapeutic approaches using host defense peptides to tackle herpes virus infections (2009) Viruses, 1, pp. 939-964 
504 |a Heunis, T., Botes, M., Dicks, L., Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers (2010) Probiotics Antimicrob Prot, 2, pp. 46-51 
504 |a Heunis, T., Bshena, O., Klumperman, B., Release of bacteriocins from nanofibers prepared with combinations of poly(D, L-lactide) (PDLLA) and poly(ethylene oxide) (PEO) (2011) Int J Mol Sci, 12, pp. 2158-2173 
504 |a Heunis, T., Dicks, L., Nanofibers offer alternative ways to the treatment of skin infections (2010) J Biomed Biotechnol, , pii 510682 
504 |a Hill, C., McKinney, E., Lowndes, C., Epidemiology of herpes simplex virus types 2 and 1 amongst men who have sex with men attending sexual health clinics in England and Wales: implications for HIV prevention and Management (2009) Euro Surveill, 14. , article 19418 
504 |a Hook, E., Cannon, R., Nahmias, A., Herpes simplex virus infection as a risk factor for human immunodeficiency virus infection (1992) J Infect Dis, 165, pp. 251-255 
504 |a Jenssen, H., Hamill, P., Hancock, R., Peptide antimicrobial agents (2006) Clin Microbiol Rev, 19, pp. 491-511 
504 |a Johnston, C., Saracino, M., Kuntz, S., Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials (2012) Lancet, 379, pp. 641-647 
504 |a Lehrer, R., Daher, K., Ganz, T., Selsted, M., Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes (1985) J Virol, 54, pp. 467-472 
504 |a Looker, K., Garnett, G., Schmid, G., An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection (2008) Bull World Health Organ, 86, pp. 805-812 
504 |a Marx, R., Stein, T., Entian, K., Structure of the Bacillus subtillis peptide antibiotic subtilosin A determined by 1H NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (2001) J Protein Chem, 20, pp. 501-506 
504 |a Morfin, F., Thouvenot, D., Herpes simplex virus resistance to antiviral drugs (2003) J Clin Virol, 26, pp. 29-37 
504 |a Piret, J., Boivin, G., Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management (2011) Antimicrob Agents Chemother, 55, pp. 459-472 
504 |a Pongtharangkul, T., Demirci, A., Evaluation of agar diffusion bioassay for nisin quantification (2004) Appl Microbiol Biotechnol, 65, pp. 268-272 
504 |a Schulte, E., Sauerbrei, A., Hoffmann, D., Zimmer, C., Hemmer, B., Mühlau, M., Acyclovir resistance in herpes simplex encephalitis (2010) Ann Neurol, 67, pp. 830-833 
504 |a Serkedjieva, J., Danova, S., Ivanova, I., Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii (2000) Appl Biochem Biotechnol, 88, pp. 285-295 
504 |a Shin, J., Cai, G., Weinberg, A., Frequency of acyclovir-resistant herpes simplex virus in clinical specimens and laboratory isolates (2001) J Clin Microbiol, 39, pp. 913-917 
504 |a Shin, Y., Hohman, M., Brenner, M., Electrospinning: a whipping fluid jet generates submicron polymer fibers (2001) Appl Phys Lett, 78, pp. 1149-1151 
504 |a Steiner, I., Kennedy, P., Pachner, A., The neurotropic herpes viruses: herpes simplex and varicella-zoster (2007) Lancet Neurol, 6, pp. 1015-1028 
504 |a Sutyak, K., Anderson, R., Dover, S., Spermicidal activity of the safe natural antimicrobial peptide subtilosin (2008) Infect Dis Obstet Gynecol, 2008, p. 540758 
504 |a Sutyak, K., Wirawan, R., Aroutcheva, A., Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens (2008) J Appl Microbiol, 104, pp. 1067-1074 
504 |a Talarico, L., Castilla, V., Rámirez, J., Synergistic in vitro interactions between (22S,23S)-3β-bromo-5α22,23-trihydroxystigmastan-6-one and foscarnet against herpes simples virus type 1 (2006) Chemotherapy, 52, pp. 38-42 
504 |a Tamamura, H., Otaka, A., Murakami, T., Interaction of an anti-HIV peptide, T22, with gp120 and CD4 (1996) Biochem Biophys Res Commun, 219, pp. 555-559 
504 |a Thennarasu, S., Lee, D., Poon, A., Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A (2005) Chem Phys Lipids, 137, pp. 38-51 
504 |a Todorov, S., Wachsman, M., Knoetze, H., An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4 V isolated from soybeans (2005) Int J Antimicrob Agents, 25, pp. 508-513 
504 |a van Velzen, M., van Loenen, F., Meesters, R., Latent acyclovir-resistant herpes simplex virus type 1 in trigeminal ganglia of immunocompetent individuals (2012) J Infect Dis, 205, pp. 1539-1543 
504 |a Wachinger, M., Kleinschmidt, A., Winder, D., Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression (1998) J Gen Virol, 79, pp. 731-740 
504 |a Wachsman, M., Castilla, V., de Ruiz Holgado, A., Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro (2003) Antivir Res, 58, pp. 17-24 
504 |a Wachsman, M., Farías, M., Takeda, E., Antiviral activity of enterocin CRL35 against herpesviruses (1999) Int J Antimicrob Agents, 12, pp. 293-299 
504 |a Wachsman, M., López, E., Ramírez, J., Antiviral effect of brassinosteroids against herpes virus and arenaviruses (2000) Antiviral Chem Chemother, 11, pp. 71-77 
504 |a Whitley, R., Roizman, B., Herpes simplex virus infections (2001) The Lancet, 357, pp. 1513-1518 
504 |a Yarin, A., Koombhongse, S., Reneker, D., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers (2001) J Appl Phys, 90, pp. 4836-4846 
504 |a Yasin, B., Pang, M., Turner, J., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides (2000) Eur J Clin Microbiol Dis, 19, pp. 187-194 
520 3 |a In the present study, the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2. 4 mg subtilosin/g fiber, and loading efficiency was 31. 6 %. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be non-toxic to human epidermal tissues using an in vitro human tissue model. Taking together these results, subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection. © 2013 Springer Science+Business Media New York.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020090200271, UBACYT 20020110 100076 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT, 00985/07 
536 |a Detalles de la financiación: National Institute of Allergy and Infectious Diseases, 1R01AI084137 
536 |a Detalles de la financiación: 2009-35603-05071 
536 |a Detalles de la financiación: Bill and Melinda Gates Foundation, OPP1025200 
536 |a Detalles de la financiación: Acknowledgments This work was supported by the Universidad de Buenos Aires (UBACYT 20020090200271 and UBACYT 20020110 100076 to N.I.T. and M.B.W.); the Agencia Nacional de Promoción Científica y Técnica (ANPCYT) PICT (00985/07 to N.I.T. and M.B.W.); the Bill and Melinda Gates Foundation Grand Challenges Exploration (Round 5, Phase I Grant OPP1025200 to M.L.C., S.X., P.J.S., and K.S.N.); the United States Department of Agriculture National Research Initiative (2009-35603-05071 to J.L. and Q.H.), and the National Institutes of Health/National Institute of Allergy and Infectious Diseases (1R01AI084137 to K.S.N., M.L.C. and P.J.S). 
593 |a Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina 
593 |a School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, NB, NJ, 08901, United States 
593 |a Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States 
593 |a Kraft Foods, Inc., 555 South Broadway, Tarrytown, NY, 10591, United States 
690 1 0 |a ANTIVIRAL 
690 1 0 |a BACTERIOCIN 
690 1 0 |a NANOFIBER 
690 1 0 |a SUBTILOSIN 
690 1 0 |a ACICLOVIR 
690 1 0 |a FOSCARNET 
690 1 0 |a NANOFIBER 
690 1 0 |a POLYPEPTIDE ANTIBIOTIC AGENT 
690 1 0 |a POLYVINYL ALCOHOL 
690 1 0 |a SUBTILOSIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a AGAR DIFFUSION 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANTIVIRAL ACTIVITY 
690 1 0 |a ARTICLE 
690 1 0 |a BACILLUS AMYLOLIQUEFACIENS 
690 1 0 |a CONCENTRATION RESPONSE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DRUG CYTOTOXICITY 
690 1 0 |a DRUG DELIVERY SYSTEM 
690 1 0 |a DRUG EFFICACY 
690 1 0 |a DRUG FORMULATION 
690 1 0 |a DRUG SAFETY 
690 1 0 |a ELECTROSPINNING 
690 1 0 |a EPIDERMIS 
690 1 0 |a HERPES SIMPLEX VIRUS 1 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN TISSUE 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN SYNTHESIS 
690 1 0 |a VERO CELL 
690 1 0 |a VIROGENESIS 
690 1 0 |a VIRUS INHIBITION 
690 1 0 |a VIRUS MUTANT 
690 1 0 |a WESTERN BLOTTING 
690 1 0 |a WILD TYPE 
690 1 0 |a BACILLUS AMYLOLIQUEFACIENS 
690 1 0 |a HUMAN HERPESVIRUS 1 
700 1 |a Noll, K.S. 
700 1 |a Xu, S. 
700 1 |a Li, J. 
700 1 |a Huang, Q. 
700 1 |a Sinko, P.J. 
700 1 |a Wachsman, M.B. 
700 1 |a Chikindas, M.L. 
773 0 |d 2013  |g v. 5  |h pp. 26-35  |k n. 1  |p Probiotics Antimicrob. Proteins  |x 18671306  |t Probiotics and Antimicrobial Proteins 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874284256&doi=10.1007%2fs12602-012-9123-x&partnerID=40&md5=4636236dbb6867c22c15518a2b699e26  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s12602-012-9123-x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_18671306_v5_n1_p26_Torres  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18671306_v5_n1_p26_Torres  |y Registro en la Biblioteca Digital 
961 |a paper_18671306_v5_n1_p26_Torres  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 72770