The caterpillar-packing polytope

A caterpillar is a connected graph such that the removal of all its vertices with degree 1 results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily induced) subgraphs of G such that each subgraph is a caterpillar. In this work we consider the set of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marenco, J.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2017
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05659caa a22006017a 4500
001 PAPER-13074
003 AR-BaUEN
005 20230518204320.0
008 190410s2017 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85018741819 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a DAMAD 
100 1 |a Marenco, J. 
245 1 4 |a The caterpillar-packing polytope 
260 |b Elsevier B.V.  |c 2017 
270 1 0 |m Marenco, J.; Computer Science Department, FCEyN, University of Buenos AiresArgentina; email: jmarenco@ungs.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Baldacci, R., Dell'Amico, M., Salazar González, J., The capacitated m-ring-star problem (2007) Oper. Res., 55 (6), pp. 1147-1162 
504 |a Bondy, A., Murty, U., (2008) Graph Theory, Springer-Verlag Graduate Texts in Mathematics, 244 
504 |a Calvete, H., Galé, C., Iranzo, J., An efficient evolutionary algorithm for the ring star problem (2013) European J. Oper. Res., 231 (1), pp. 22-33 
504 |a Dias, T., de Sousa, G., Macambira, E., Cabral, L., Fampa, M., (2006), An efficient heuristic for the ring star problem, in: Proceedings of the 5th International Workshop on Experimental Algorithms WEA 2006; Dinneen, M., Khosravani, M., A linear time algorithm for the minimum spanning caterpillar problem for bounded treewidth graphs (2010), Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity; Dinneen, M., Khosravani, M., Hardness of approximation and integer programming frameworks for searching for caterpillar trees (2011), pp. 145-150. , Proceedings of the Seventeenth Computing on The Australasian Theory Symposium; Kedad-Sidhoum, S., Nguyen, V., An exact algorithm for solving the ring star problem (2010) Optimization, 59 (1), pp. 125-140 
504 |a Labbé, M., Laporte, G., Martín, I., González, J., The ring star problem: polyhedral analysis and exact algorithm (2004) Networks, 43, pp. 177-189 
504 |a Lekkerkerker, C., Boland, J., Representation of a finite graph by a set of intervals on the real line (1962) Fund. Math., 51, pp. 45-64 
504 |a Lucero, S., Marenco, J., Martínez, F., An integer programming approach for the 2-schemes strip cutting problem with a sequencing constraint (2015) Optim. Eng., 16 (3), pp. 605-632 
504 |a Marenco, J., The caterpillar-packing polytope (2015) Electron. Notes Discrete Math., 50, pp. 47-52 
504 |a Naji-Azimi, Z., Salari, M., Toth, P., A heuristic procedure for the capacitated m-ring-star problem (2010) European J. Oper. Res., 207 (3), pp. 1227-1234 
504 |a Rinaldi, F., Franz, A., A two-dimensional strip cutting problem with sequencing constraint (2007) European J. Oper. Res., 183, pp. 1371-1384 
504 |a Simonetti, L., Frota, Y., de Souza, C.C., (2009), pp. 48-51. , An exact method for the minimum caterpillar spanning problem, in: Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization; Simonetti, L., Frota, Y., de Souza, C.C., Upper and lower bounding procedures for the minimum caterpillar spanning problem (2009) Electron. Notes Discrete Math., 35, pp. 83-88 
504 |a Sundar, K., Rathinam, S., Multiple depot ring star problem: A polyhedral study and exact algorithm arXiv:1407.5080; Zhang, Z., Qin, H., Lim, A., A memetic algorithm for the capacitated m-ring-star problem (2014) Appl. Intell., 40 (2), pp. 305-321 
520 3 |a A caterpillar is a connected graph such that the removal of all its vertices with degree 1 results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily induced) subgraphs of G such that each subgraph is a caterpillar. In this work we consider the set of caterpillar-packings of a graph, which corresponds to feasible solutions of the 2-schemes strip cutting problem with a sequencing constraint (2-SSCPsc) presented by F. Rinaldi and A. Franz in 2007. We study the polytope associated with a natural integer programming formulation of this problem. We explore basic properties of this polytope, including a lifting lemma and several facet-preserving operations on the graph. These results allow us to introduce several families of facet-inducing inequalities. © 2017 Elsevier B.V.  |l eng 
593 |a Sciences Institute, National University of General Sarmiento, Argentina 
593 |a Computer Science Department, FCEyN, University of Buenos Aires, Argentina 
690 1 0 |a CATERPILLAR-PACKING 
690 1 0 |a FACETS 
690 1 0 |a INTEGER PROGRAMMING 
690 1 0 |a CONNECTED GRAPH 
690 1 0 |a CUTTING PROBLEMS 
690 1 0 |a FACETS 
690 1 0 |a FEASIBLE SOLUTION 
690 1 0 |a NATURAL INTEGER 
690 1 0 |a POLYTOPES 
690 1 0 |a SUBGRAPHS 
690 1 0 |a VERTEX DISJOINT 
690 1 0 |a GRAPH THEORY 
773 0 |d Elsevier B.V., 2017  |g v. 245  |h pp. 4-15  |p Discrete Appl Math  |x 0166218X  |w (AR-BaUEN)CENRE-310  |t Discrete Applied Mathematics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018741819&doi=10.1016%2fj.dam.2017.03.018&partnerID=40&md5=4706d66c221dd156cca1311b3978bcb1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.dam.2017.03.018  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0166218X_v245_n_p4_Marenco  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v245_n_p4_Marenco  |y Registro en la Biblioteca Digital 
961 |a paper_0166218X_v245_n_p4_Marenco  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 74027