Ferroelectric Tunnel Junction for Dense Cross-Point Arrays

Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lee, H.-S
Otros Autores: Han, W., Chung, H.-Y, Rozenberg, M., Kim, K., Lee, Z., Yeom, G.Y, Park, H.-H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12665caa a22011657a 4500
001 PAPER-13194
003 AR-BaUEN
005 20230518204329.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84944345162 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lee, H.-S. 
245 1 0 |a Ferroelectric Tunnel Junction for Dense Cross-Point Arrays 
260 |b American Chemical Society  |c 2015 
270 1 0 |m Park, H.-H.; Department of Materials Science and Engineering, Yonsei UniversitySouth Korea 
506 |2 openaire  |e Política editorial 
504 |a Garcia, V., Bibes, M., Ferroelectric Tunnel Junctions for Information Storage and Processing (2014) Nat. Commun., 5, p. 4289 
504 |a Ramesh, R., Spaldin, N.A., Multiferroics: Progress and Prospects in Thin Films (2007) Nat. Mater., 6, pp. 21-29 
504 |a Wuttig, M., Phase-Change Materials: Towards a Universal Memory? (2005) Nat. Mater., 4, pp. 265-266 
504 |a Chappert, C., Fert, A., Van Dau, F.N., The Emergence of Spin Electronics in Data Storage (2007) Nat. Mater., 6, pp. 813-823 
504 |a Waser, R., Dittmann, R., Staikov, G., Szot, K., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges (2009) Adv. Mater., 21, pp. 2632-2663 
504 |a Rozenberg, M.J., Resistive Switching (2011) Scholarpedia, 6, p. 11414 
504 |a Szot, K., Speier, W., Bihlmayer, G., Waser, R., Switching the Electrical Resistance of Individual Dislocations in Single-Crystalline SrTiO3 (2006) Nat. Mater., 5, pp. 312-320 
504 |a Linn, E., Rosezin, R., Kügeler, C., Waser, R., Complementary Resistive Switches for Passive Nanocrossbar Memories (2010) Nat. Mater., 9, pp. 403-406 
504 |a Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, K., A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5-x/TaO2-x Bilayer Structures (2011) Nat. Mater., 10, pp. 625-630 
504 |a Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices (2008) Nat. Nanotechnol., 3, pp. 429-433 
504 |a Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., Park, S., Hwang, H., High Current Density and Nonlinearity Combination of Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector-One Resistor Arrays (2012) ACS Nano, 6, pp. 8166-8172 
504 |a Yoon, J.H., Song, S.J., Yoo, I.-H., Seok, J.Y., Yoon, K.J., Kwon, D.E., Park, T.H., Hwang, C.S., Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure (2014) Adv. Funct. Mater., 24, pp. 5086-5095 
504 |a Pantel, D., Alexe, M., Electroresistance Effects in Ferroelectric Tunnel Barriers (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 82, p. 134105 
504 |a Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Zhuravlev, M.Y., Tsymbal, E.Y., Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale (2009) Nano Lett., 9, pp. 3539-3543 
504 |a Fowler, R.H., Nordheim, L., Electron Emission in Intense Electric Fields (1928) Proc. R. Soc. London, Ser. A, 119, pp. 173-181 
504 |a Sze, S.M., (2007) Physics of Semiconductor Devices, , 3 rd ed. Wiley-Interscience: Hoboken, NJ 
504 |a Kohlstedt, H., Pertsev, N.A., Rodriguez Contreras, J., Waser, R., Theoretical Current-Voltage Characteristics of Ferroelectric Tunnel Junctions (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72, p. 125341 
504 |a Zhuravlev, M.Y., Sabirianov, R.F., Jaswal, S.S., Tsymbal, E.Y., Giant Electroresistance in Ferroelectric Tunnel Junctions (2005) Phys. Rev. Lett., 94, p. 246802 
504 |a Chanthbouala, A., Crassous, A., Garcia, V., Bouzehouane, K., Fusil, S., Moya, X., Allibe, J., Barthélémy, A., Solid-State Memories Based on Ferroelectric Tunnel Junctions (2011) Nat. Nanotechnol., 7, pp. 101-104 
504 |a Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Grollier, J., A Ferroelectric Memristor (2012) Nat. Mater., 11, pp. 860-864 
504 |a Soni, R., Petraru, A., Meuffels, P., Vavra, O., Ziegler, M., Kim, S.K., Jeong, D.S., Kohlstedt, H., Giant Electrode Effect on Tunneling Electroresistance in Ferroelectric Tunnel Junctions (2014) Nat. Commun., 5, p. 5414 
504 |a Pantel, D., Goetze, S., Hesse, D., Alexe, M., Room-Temperature Ferroelectric Resistive Switching in Ultrathin Pb(Zr0.2Ti0.8)O3 Films (2011) ACS Nano, 5, pp. 6032-6038 
504 |a Dagotto, E., (2003) Nanoscale Phase Separation and Colossal Magnetoresistance, , Springer-Verlag: Berlin Heidelberg 
504 |a Salamon, M.B., Jaime, M., The Physics of Manganites: Structure and Transport (2001) Rev. Mod. Phys., 73, pp. 583-628 
504 |a Wadati, H., Maniwa, A., Chikamatsu, A., Ohkubo, I., Kumigashira, H., Oshima, M., Fujimori, A., Koinuma, H., In Situ Photoemission Study of Pr1-xCaxMnO3 Epitaxial Thin Films with Suppressed Charge Fluctuations (2008) Phys. Rev. Lett., 100, p. 026402 
504 |a Satpathy, S., Popović, Z.S., Vukajlović, F.R., Electronic Structure of the Perovskite Oxides: La1-xCaxMnO3 (1996) Phys. Rev. Lett., 76, pp. 960-963 
504 |a Raabe, S., Mierwaldt, D., Ciston, J., Uijttewaal, M., Stein, H., Hoffmann, J., Zhu, Y., Jooss, C., In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite Perovskites (2012) Adv. Funct. Mater., 22, pp. 3378-3388 
504 |a Jooss, Ch., Wu, L., Beetz, T., Klie, R.F., Beleggia, M., Schofield, M.A., Schramm, S., Zhu, Y., Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13597-13602 
504 |a Jooss, Ch., Hoffmann, J., Fladerer, J., Ehrhardt, M., Beetz, T., Wu, L., Zhu, Y., Electric Pulse Induced Resistance Change Effect in Manganites due to Polaron Localization at the Metal-Oxide Interfacial Region (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, p. 132409 
504 |a Lee, H.S., Choi, S.G., Park, H.-H., Rozenberg, M.J., A New Route to the Mott-Hubbard Metal-Insulator Transition: Strong Correlations Effects in Pr0.7Ca0.3MnO3 (2013) Sci. Rep., 3, p. 1704 
504 |a Stengel, M., Spaldin, N.A., Origin of the Dielectric Dead Layer in Nanoscale Capacitors (2006) Nature, 443, pp. 679-682 
504 |a Sinnamon, L.J., Bowman, R.M., Gregg, J.M., Investigation of Dead-Layer Thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au Thin-Film Capacitors (2001) Appl. Phys. Lett., 78, p. 1724 
504 |a Zhou, C., Newns, D.M., Intrinsic Dead Layer Effect and the Performance of Ferroelectric Thin Film Capacitors (1997) J. Appl. Phys., 82, p. 3081 
504 |a Sun, P., Wu, Y.-Z., Cai, T.-Y., Ju, S., Effects of Ferroelectric Dead Layer on the Electron Transport in Ferroelectric Tunneling Junctions (2011) Appl. Phys. Lett., 99, p. 052901 
504 |a Peressi, M., Binggeli, N., Baldereschi, A., Band Engineering at Interfaces: Theory and Numerical Experiments (1998) J. Phys. D: Appl. Phys., 31, pp. 1273-1299 
504 |a Liu, C.-T., Zheng, Y., Wang, B., Chen, W.-J., Prediction of Ferroelectric Stability and Magnetoelectric Effect of Asymmetric Multiferroic Tunnel Junctions (2013) Appl. Phys. Lett., 102, p. 152906 
504 |a Chen, W.-J., Zheng, Y., Luo, X., Wang, B., Woo, C.-H., Ab Initio Study on the Size Effect of Symmetric and Asymmetric Ferroelectric Tunnel Junctions: A Comprehensive Picture with Regard to the Details of Electrode/Ferroelectric Interfaces (2013) J. Appl. Phys., 114, p. 064105 
504 |a Umeno, Y., Albina, J.-M., Meyer, B., Elsässer, C., Ab Initio Calculations of Ferroelectric Instability in PbTiO3 Capacitors with Symmetric and Asymmetric Electrode Layers (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 80, p. 205122 
504 |a Minohara, M., Yasuhara, R., Kumigashira, H., Oshima, M., Termination Layer Dependence of Schottky Barrier Height for La0.6Sr0.4MnO3 /Nb:SrTiO3 Heterojunctions (2010) Phys. Rev. B: Condens. Matter Mater. Phys., 81, p. 235322 
504 |a Bilc, D.I., Novaes, F.D., Íňiguez, J., Ordejón, P., Ghosez, P., Electroresistance Effect in Ferroelectric Tunnel Junctions with Symmetric Electrodes (2012) ACS Nano, 6, pp. 1473-1478 
504 |a Sun, P., Wu, Y.-Z., Zhu, S.-H., Cai, T.-Y., Ju, S., Interfacial Dead Layer Effects on Current-Voltage Characteristics in Asymmetric Ferroelectric Tunnel Junctions (2013) J. Appl. Phys., 113, p. 174101 
504 |a Liu, Y., Lou, X., Bibes, M., Dkhil, B., Effect of a Built-In Electric Field in Asymmetric Ferroelectric Tunnel Junctions (2013) Phys. Rev. B: Condens. Matter Mater. Phys., 88, p. 024106 
504 |a Amsinck, C.J., Di Spigna, N.H., Nackashi, D.P., Franzon, P.D., Scaling Constraints in Nanoelectronic Random-Access Memories (2005) Nanotechnology, 16, pp. 2251-2260 
504 |a Huang, J.-J., Tseng, Y.-M., Hsu, C.-W., Hou, T.-H., Bipolar Nonlinear Selector for 1S1R Crossbar Array Applications (2011) IEEE Electron Device Lett., 32, pp. 1427-1429 
520 3 |a Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/ BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/ Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity. © 2015 American Chemical Society.  |l eng 
593 |a Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul, 120-749, South Korea 
593 |a Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, Orsay, 91405, France 
593 |a IFIBA-Conicet, Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón i, Buenos Aires, 1428, Argentina 
593 |a School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea 
593 |a Department of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, South Korea 
690 1 0 |a CROSS POINT ARRAY STRUCTURE 
690 1 0 |a FERROELECTRIC TUNNEL JUNCTION 
690 1 0 |a MEMRISTOR 
690 1 0 |a PEROVSKITE MANGANITE FAMILY 
690 1 0 |a SNEAK CURRENT 
690 1 0 |a BARIUM COMPOUNDS 
690 1 0 |a CALCIUM 
690 1 0 |a FERROELECTRICITY 
690 1 0 |a FLASH MEMORY 
690 1 0 |a MANGANESE OXIDE 
690 1 0 |a MEMRISTORS 
690 1 0 |a PASSIVE FILTERS 
690 1 0 |a THERMIONIC EMISSION 
690 1 0 |a CROSS-POINT ARRAY 
690 1 0 |a FERROELECTRIC TUNNEL JUNCTIONS 
690 1 0 |a MEMRISTOR 
690 1 0 |a PEROVSKITE MANGANITES 
690 1 0 |a SNEAK CURRENTS 
690 1 0 |a TUNNEL JUNCTIONS 
700 1 |a Han, W. 
700 1 |a Chung, H.-Y. 
700 1 |a Rozenberg, M. 
700 1 |a Kim, K. 
700 1 |a Lee, Z. 
700 1 |a Yeom, G.Y. 
700 1 |a Park, H.-H. 
773 0 |d American Chemical Society, 2015  |g v. 7  |h pp. 22348-22354  |k n. 40  |p ACS Appl. Mater. Interfaces  |x 19448244  |t ACS Applied Materials and Interfaces 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944345162&doi=10.1021%2facsami.5b06117&partnerID=40&md5=99b4c26f3e3e7cbe8d7e8fa7fbb6b69a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/acsami.5b06117  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19448244_v7_n40_p22348_Lee  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19448244_v7_n40_p22348_Lee  |y Registro en la Biblioteca Digital 
961 |a paper_19448244_v7_n40_p22348_Lee  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74147