Atomistic modeling of Ag, Au, and Pt nanoframes

Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original sh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fioressi, S.E
Otros Autores: Bacelo, D.E, Bozzolo, G., Mosca, Hugo Osvaldo, Del Grosso, M.F
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08857caa a22011297a 4500
001 PAPER-13538
003 AR-BaUEN
005 20250805115722.0
008 190411s2015 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84912569713 
030 |a CMMSE 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Fioressi, S.E. 
245 1 0 |a Atomistic modeling of Ag, Au, and Pt nanoframes 
260 |b Elsevier  |c 2015 
270 1 0 |m Bozzolo, G.; Loyola University of Maryland, 4501 N. Charles St, United States 
504 |a Hu, J., Chen, M., Fang, X.S., Wu, L.M., (2011) Chem. Soc. Rev., 40, p. 5472 
504 |a Zhang, F., Shi, Y.F., Sun, X.H., Zhao, D.Y., Stucky, G.D., (2009) Chem. Mater., 21, p. 5237 
504 |a Liu, J., Qiao, S.Z., Hartono, S.B., Lu, G.Q., (2010) Angew. Chem. Int. Ed., 49, p. 4981 
504 |a Liu, J., Hartono, S.B., Jin, Y.G., Li, Z., Lu, G.Q., Qiao, S.Z., (2010) J. Mater. Chem., 20, p. 4595 
504 |a Sun, Z., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y.M., Dou, S.X., (2011) J. Am. Chem. Soc., 133, p. 19314 
504 |a Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters Springer Series in Materials Science, 25, p. 125. , Springer Berlin 
504 |a Bai, F., Sun, Z.C., Wu, H.M., Haddad, R.E., Xiao, X.Y., Fan, H.Y., (2011) Nano Lett., 11, p. 3759 
504 |a Peng, Z.M., Wu, J.B., Yang, H., (2010) Chem. Mater., 22, p. 1098 
504 |a Wang, J.X., Ma, C., Choi, Y.M., Su, D., Zhu, Y.M., Liu, P., Si, R., Adzic, R.R., (2011) J. Am. Chem. Soc., 133, p. 13551 
504 |a Brigger, I., Dubernet, C., Couvreur, P., (2002) Adv. Drug Deliv. Rev., 54, p. 631 
504 |a Huang, X., El-Sayed, I., Qian, W., El-Sayed, M.A., (2006) J. Am. Chem. Soc., 128, p. 2115 
504 |a Hainfeld, J., Slatkin, D., Smilowitz, H., (2004) Phys. Med. Biol., 49, p. 309 
504 |a Wu, D., Zhang, X., Liu, P., Zhang, L., Fan, F., Guo, M., (2011) Curr. Nanosci., 7, p. 110 
504 |a Murphy, C., Gole, A., Stone, J., Sisco, P., Alkilany, A., Goldsmith, E., Baxter, S., (2008) Acc. Chem. Res., 41, p. 1721 
504 |a Zhang, X.D., Wu, H.Y., (2010) Int. J. Nanomed., 5, p. 771 
504 |a Zhang, X.D., Guo, M.L., Wu, H.Y., Sun, Y.M., Ding, Y.Q., Feng, X., Zhang, L.A., (2009) Int. J. Nanomed., 4, p. 165 
504 |a Sun, Y.G., Xia, Y.N., (2002) Science, 298, p. 2176 
504 |a Lu, X., Au, L., McLellan, J., Li, Z.-Y., Marquez, M., Xia, Y., (2007) Nano Lett., 7, p. 1764 
504 |a Au, L., Chen, Y., Zhou, F., Camargo, P.H.C., Lim, B., Li, Z.-Y., Ginger, D.S., Xia, Y., (2008) Nano Res., 1, p. 441 
504 |a Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, L.M., Xia, Y., (2008) Acc. Chem. Res., 41, p. 1587 
504 |a Rycenga, M., Wang, Z., Gordon, E., Cobley, C., Schwartz, A.G., Lo, C.S., Xia, Y., (2009) Angew. Chem. Int. Ed. Engl., 48, p. 9924 
504 |a Mahmoud, M.A., El-Sayed, M.A., (2012) Langmuir, 28, p. 4051 
504 |a Wu, R., Qing-Cheng, K., Chenglin, F., Shi-Qin, L., Cui, Y., Jian-Yu, L., Yongxiang, C., Jian-Qiang, H., (2013) RSC Adv., 3, p. 12577 
504 |a Moon, G.D., Choi, S.W., Cai, X., Li, W., Cho, E.C., Jeong, U., Wang, L.V., Xia, Y., (2011) J. Am. Chem. Soc., 133, p. 4762 
504 |a Chen, J., Wiley, B., Li, Z.Y., Campbell, D., Saeki, F., Cang, H., Xia, Y., (2005) Adv. Mater., 17, p. 2255 
504 |a Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., (2008) Acc. Chem. Res., 41, p. 1578 
504 |a Mahmoud, M.A., Narayanan, R., El-Sayed, M.A., (2013) Acc. Chem. Res., 46, p. 1795 
504 |a Zhang, H., Jin, M., Liu, H., Wang, J., Kim, M.J., Yang, D., Xie, Z., Xia, Y., (2011) ACS Nano, 5, p. 8212 
504 |a Ji, C., Park, H.S., (2007) Nanotechnology, 18, p. 115707 
504 |a Shu, Q., Yang, Y., Zhai, Y.T., Sun, D.Y., Xianga, H.J., Gong, X.G., (2012) Nanoscale, 4, p. 6307 
504 |a Kang, J.W., Seo, J.J., Hwang, H.J., (2002) J. Phys.: Condens. Matter, 14, p. 8997 
504 |a Enyashin, A.N., Ivanovskii, A.L., (2007) J. Mol. Struct.: THEOCHEM, 822, p. 28 
504 |a Delogu, F., (2008) J. Phys. Chem. C, 112, p. 11135 
504 |a Jiang, S., Zhang, H., Zheng, Y., Chen, Z., (2009) J. Phys. D: Appl. Phys., 42, p. 135408 
504 |a Jiang, S., Zhang, Y., Gan, Y., Chen, Z., Peng, H.S., (2013) J. Phys. D: Appl. Phys., 46, p. 335302 
504 |a Delogu, F., (2008) J. Phys. Chem. A, 112, p. 2863 
504 |a Bozzolo, G., Ferrante, J., Smith, J.R., (1992) Phys. Rev. B, 45, p. 493 
504 |a Bozzolo, G., Garcés, J.E., The chemical physics of solid surfaces (2002) Surface Alloys and Alloy Surfaces, 10, p. 30. , D.P. Woodruff, Elsevier New York 
504 |a Wilson, A., Bozzolo, G., Noebe, R.D., Howe, J.M., (2002) Acta Mater., 50, p. 2787 
504 |a Bozzolo, G., Garcés, J.E., Noebe, R.D., Farías, D., (2003) Nanotechnology, 14, p. 939 
504 |a Pint, C., Bozzolo, G., Hauge, R., (2008) Nanotechnology, 19, p. 405704 
504 |a Negreiros Ribeiro, F., Avellar Soares, E., De Carvalho, V.E., Bozzolo, G., (2007) Phys. Rev. B, 76, p. 245432 
504 |a Zink, A., Bozzolo, G., Mosca, H.O., (2012) Int. J. Nanosci., 11, p. 1250011 
504 |a Kara, D.C., Drexel, M.S., Bozzolo, G., Mosca, H.O., (2010) Int. J. Nanosci., 9, p. 413 
504 |a Smith, J., Perry, T., Banerjea, A., Ferrante, J., Bozzolo, G., (1991) Phys. Rev. B, 44, p. 6444 
504 |a Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., WIEN2K (2001) An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , K. Schwarz, Techn. Universität Wien Wien 
504 |a Bozzolo, G., Khalil, J., Noebe, R.D., (2002) Comput. Mater. Sci., 24, p. 457 
504 |a Bozzolo, G., Noebe, R.D., Ferrante, J., Amador, C., (1999) J. Comput. Aided Mater. Des., 6, p. 1 
506 |2 openaire  |e Política editorial 
520 3 |a Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other. © 2014 Elsevier B.V. All rights reserved.  |l eng 
593 |a Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina 
593 |a Loyola University of Maryland, 4501 N. Charles St, Baltimore, MD 21210, United States 
593 |a Grupo de Caracterización y Modelación de Materiales, UTN, FRGP, H. Yrigoyen 288, Gral. Pacheco, B1617FRP, Argentina 
593 |a Materia Condensada, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, B1650KNA, Argentina 
593 |a Sub-Gcia. de Tecnología y Aplicaciones de Aceleradores, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, B1650KNA, Argentina 
690 1 0 |a BFS METHOD 
690 1 0 |a METALLIC NANOCAGES 
690 1 0 |a NANOFRAMES 
690 1 0 |a PLATINUM 
690 1 0 |a ATOMISTIC MODELING 
690 1 0 |a BFS METHOD 
690 1 0 |a CRITICAL TEMPERATURES 
690 1 0 |a MONTE CARLO ATOMISTIC SIMULATIONS 
690 1 0 |a NANOCAGES 
690 1 0 |a NANOFRAMES 
690 1 0 |a QUANTUM METHODS 
690 1 0 |a STRUCTURAL FACTOR 
690 1 0 |a MONTE CARLO METHODS 
700 1 |a Bacelo, D.E. 
700 1 |a Bozzolo, G. 
700 1 |a Mosca, Hugo Osvaldo 
700 1 |a Del Grosso, M.F. 
773 0 |d Elsevier, 2015  |g v. 98  |h pp. 142-148  |p Comput Mater Sci  |x 09270256  |w (AR-BaUEN)CENRE-4273  |t Computational Materials Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84912569713&doi=10.1016%2fj.commatsci.2014.11.003&partnerID=40&md5=d2699247f5b75e9356d1a499cc430301  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.commatsci.2014.11.003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09270256_v98_n_p142_Fioressi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09270256_v98_n_p142_Fioressi  |y Registro en la Biblioteca Digital 
961 |a paper_09270256_v98_n_p142_Fioressi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74491