UV protection of Euglenoids: Computation of the electromagnetic response

Euglenoids are a group of predominantly free-living unicellular microorganisms that mostly live in freshwater bodies but can also be found in marine and brackish waters. These organisms have a characteristic that distinguishes them form the other protists: they are covered by a surface pellicle form...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dolinko, Andrés Ezequiel
Otros Autores: Valencia, C., Skigin, D.C, Inchaussandague, M.E, Tolivia, A., Conforti, V., Svanberg K., Kurachi C., Bagnato V.S, Tromberg B.J, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; International Photodynamic Association; The Sao Paulo Research Foundation (FAPESP); The Society of Photo-Optical Instrumentation Engineers (SPIE)
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: SPIE 2015
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08929caa a22009377a 4500
001 PAPER-13663
003 AR-BaUEN
005 20250225100530.0
008 190411s2015 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84938912050 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Dolinko, Andrés Ezequiel 
245 1 0 |a UV protection of Euglenoids: Computation of the electromagnetic response 
260 |b SPIE  |c 2015 
504 |a Parker, A., 515 Million years of structural colour (2000) J. Opt. A, Pure Appl. Opt, 2, pp. R15-R28 
504 |a Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths (1999) Chem. Rev., 99, pp. 1935-1961 
504 |a Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, pp. 852-855 
504 |a Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , World Scientific Publishing Co., Singapore 
504 |a Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , Springer Science+Business Media, LLC, France 
504 |a Vigneron, J.-P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biro, L.P., Ertz, D., Lousse, V., Optical structure and function of the white filamentary hair covering the edelweiss bracts (2005) Phys. Rev. E, 71 
504 |a Kertész, K., Bálint, Z., Vértesy, Z., Márk, G.I., Lousse, V., Vigneron, J.-P., Biro, L.P., Photonic crystal type structures of biological origin: Structural and spectral characterization (2006) Current Applied Physics, 6, pp. 252-258 
504 |a Skerratt, J.H., Davidson, A.D., Nichols, P.D., McMeekin, T.A., Effect of UV-B on lipid content of three Antarctic marine phytoplankton (1998) Phytochemistry, 49, pp. 999-1007 
504 |a Bischof, K., Hanelt, D., Wiencke, C., Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae (2000) Planta, 211, pp. 555-562 
504 |a Jokiel, P.L., York, R.H., Jr., Importance of ultraviolet radiation in photoinhibition of microalgal growth (1984) Limnol. Oceanogr., 29, pp. 192-199 
504 |a Franklin, L., Forster, R., The changing irradiance environment: Consequences for marine macrophyte physiology, productivity and ecology (1997) European Journal of Phycology, 32, pp. 207-232 
504 |a Ekelund, G.A., Interactions between photosynthesis and light-enhanced dark respiration(LEDR) in the flagellate Euglena gracilis after irradiation with ultraviolet radiation (2000) Journal of Photochemistry and Photobiology B: Biology, 55, pp. 63-69 
504 |a Karentz, D., McEuen, F.S., Land, M.C., Dunlap, W.C., Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure (1991) Marine Biology, 108, pp. 157-166 
504 |a Inchaussandague, M.E., Skigin, D.C., Tolivia, A., Fuertes Vila, I., Conforti, V., Electromagnetic response of the protective pellicle of different unicellular microalgae (2014) Proc. of SPIE, 9055. , Bioinspiration, Biomimetics, and Bioreplication 2014 
504 |a Inchaussandague, M.E., Gigli, M.L., Skigin, D.C., Tolivia, A., Conforti, V., Electromagnetic response of the protective pellicle of Euglenoids: Influence of the surface profile (2015) Proc. of SPIE, 9429. , Bioinspiration, Biomimetics, and Bioreplication 2015 
504 |a Dolinko, A.E., Skigin, D.C., Enhanced method for determining the optical response of highly complex biological photonic structures (2013) J. Opt. Soc. Am. A, 30, pp. 1746-1759 
504 |a Valencia, C.I., Méndez, E.R., Mendoza, B.S., Second harmonic generation in the scattering of light by two-dimensional particles (2003) J. Opt. Soc. Am. B, 20, pp. 2150-2161 
504 |a Bohren, C.F., Huffman, D.R., (2008) Absorption and Scattering of Light by Small Particles, , Wiley, New York 
504 |a Dolinko, A.E., From Newton's second law to Huygens's principle: Visualizing waves in a large array of masses joined by springs (2009) Eur. J. Phys., 30, pp. 1217-1228A4 - Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; International Photodynamic Association; The Sao Paulo Research Foundation (FAPESP); The Society of Photo-Optical Instrumentation Engineers (SPIE) 
506 |2 openaire  |e Política editorial 
520 3 |a Euglenoids are a group of predominantly free-living unicellular microorganisms that mostly live in freshwater bodies but can also be found in marine and brackish waters. These organisms have a characteristic that distinguishes them form the other protists: they are covered by a surface pellicle formed by S-shaped overlapping bands which resemble a diffraction grating. These microorganisms have developed numerous protection mechanisms intended to avoid or reduce the damage produced by UV radiation, such as the production of pigments and the repair mechanisms in hours of darkness and during daylight. In a recent paper we have investigated the role played by the pellicle of Euglenoids in the protection of the cell against UV radiation, by means of an electromagnetic approach based on the approximation of the pellicle profile by a one-dimensional diffraction grating. This simplified model allowed us to confirm that under certain incidence conditions, the corrugation of the pellicle helps increase the UV reflection, and consequently, diminish the UV radiation that enters the cell. In order to analyze the electromagnetic response of the whole cell, we extend two different approaches to calculate the reflected response: a simulation method especially developed to deal with complex biological structures that permits the introduction of the scattering object via an electron microscopy image, and the integral method, which has been widely used to compute the electromagnetic response of finite structures. Numerical results of near and far fields are shown. © 2015 Copyright SPIE.  |l eng 
593 |a Departamento de Biodiversidad y Biología Experimental, FCEN, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860, Mexico 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a IFIBA-CONICET, Pabellón I, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
593 |a Laboratorio de Biología Comparada de Protistas, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina 
593 |a IBBEA-CONICET, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina 
690 1 0 |a MICROALGAE 
690 1 0 |a NATURAL PHOTONIC STRUCTURES 
690 1 0 |a PHOTONIC SIMULATION METHOD 
690 1 0 |a UV PROTECTION 
690 1 0 |a ALGAE 
690 1 0 |a BIOINFORMATICS 
690 1 0 |a DIFFRACTION 
690 1 0 |a DIFFRACTION GRATINGS 
690 1 0 |a MICROBIOLOGY 
690 1 0 |a MICROORGANISMS 
690 1 0 |a PHOTONICS 
690 1 0 |a PROTOZOA 
690 1 0 |a ULTRAVIOLET RADIATION 
690 1 0 |a BIOLOGICAL STRUCTURES 
690 1 0 |a ELECTROMAGNETIC RESPONSE 
690 1 0 |a ELECTRON MICROSCOPY IMAGES 
690 1 0 |a MICRO-ALGAE 
690 1 0 |a PHOTONIC STRUCTURE 
690 1 0 |a PROTECTION MECHANISMS 
690 1 0 |a UNICELLULAR MICROORGANISMS 
690 1 0 |a UV PROTECTION 
690 1 0 |a RADIATION PROTECTION 
700 1 |a Valencia, C. 
700 1 |a Skigin, D.C. 
700 1 |a Inchaussandague, M.E. 
700 1 |a Tolivia, A. 
700 1 |a Conforti, V. 
700 1 |a Svanberg K. 
700 1 |a Kurachi C. 
700 1 |a Bagnato V.S. 
700 1 |a Tromberg B.J. 
700 1 |a Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; International Photodynamic Association; The Sao Paulo Research Foundation (FAPESP); The Society of Photo-Optical Instrumentation Engineers (SPIE) 
711 2 |d 23 May 2015 through 25 May 2015  |g Código de la conferencia: 113191 
773 0 |d SPIE, 2015  |g v. 9531  |p Progr. Biomed. Opt. Imaging Proc. SPIE  |n Progress in Biomedical Optics and Imaging - Proceedings of SPIE  |x 16057422  |z 9781628416961  |t Biophotonics South America 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938912050&doi=10.1117%2f12.2180935&partnerID=40&md5=57bff7af3b10fea887371ce089e55bdd  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1117/12.2180935  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_16057422_v9531_n_p_Dolinko  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16057422_v9531_n_p_Dolinko  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_16057422_v9531_n_p_Dolinko  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion