Electrospun nanofibrous mats: From vascular repair to osteointegration

Electrospinning is a versatile technique for generating a mat of continuous fibers with diameters from a few nanometers to several micrometers. The diversity of electrospinnable materials, and the unique features associated with electrospun fibers make this technique and its resultant structures att...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ribba, L.
Otros Autores: Parisi, M., D'Accorso, N.B, Goyanes, Silvia Nair
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Scientific Publishers 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 53853caa a22037577a 4500
001 PAPER-14029
003 AR-BaUEN
005 20250423093411.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84931068523 
024 7 |2 cas  |a Bone Substitutes 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ribba, L. 
245 1 0 |a Electrospun nanofibrous mats: From vascular repair to osteointegration 
260 |b American Scientific Publishers  |c 2014 
270 1 0 |m D'Accorso, N.B.; Departamento de Química Orgánica, Facultad de Ciencias Exactas Y Naturales-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos AiresArgentina; email: norma@qo.fcen.uba.ar 
504 |a Lukehart, C.M., Scott, R.A., (2008) Nanomaterials: Inorganic and Bioinorganic Perspectives, , John Wiley & Sons, Chichester, West Sussex 
504 |a Nalwa, H.S., (2004) Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 1. , Los Angeles, CA 
504 |a Nalwa, H.S., (2000) Handbook of Nanostructured Materials and Nanotechnology, 1-5. , Academic Press, San Diego, CA 
504 |a Wendorff, J.H., Agarwal, S., Greiner, A., (2012) Electrospinning: Materials, Processing, and Applications, , Wiley-VCH, Weinheim 
504 |a Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z., (2005) An Introduction to Electrospinning and Nanofibers, , World Scientific Publishing Co., Singapore 
504 |a Wang, X., Ding, B., Sun, G., Wang, M., Yu, J., Electrospinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets (2013) Prog. Mater. Sci., 58, p. 1173 
504 |a Bhardwaj, N., Kundu, S.C., Electrospinning: A fascinating fiber fabrication technique (2010) Biotechnol. Adv., 28, p. 325 
504 |a Tong, L., Xungai, W., (2011) Encyclopedia of Nanoscience and Nanotechnology, 16, pp. 447-464. , edited by H. S. Nalwa, American Scientific Publishers, Los Angeles, CA 
504 |a Lu, P., Ding, B., Applications of electrospun fibers (2008) Recent. Pat. Nanotech., 2, p. 169 
504 |a Woodarda, J.R., Hilldorea, A.J., Lanb, S.K., Parkb, C.J., Morganb, A.W., Eurellc, J.C., Clarkd, S.G., Johnson, A.J.W., The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity (2007) Biomaterials, 28, p. 45 
504 |a Li, C., Vepari, C., Jin, H.J., Kim, H.J., Kaplan, D.L., Electrospun silk-BMP-2 scaffolds for bone tissue engineering (2006) Biomaterials, 27, p. 3115 
504 |a Bhattacharyya, S., Kumbar, S.G., Khan, Y.M., Nair, L.S., Singh, A., Krogman, N.R., Brown, P.W., Laurencin, C.T., Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering (2009) J. Biomed. Nanotechnol., 5, p. 69 
504 |a Jaiswal, A.K., Dhumal, R.V., Ghosh, S., Chaudhari, P., Nemani, H., Soni, V.P., Vanage, G.R., Bellare, J.R., Bone healing evaluation of nanofibrous compositescaffolds in rat calvarial defects: A comparative study (2013) J. Biomed. Nanotechnol., 9, p. 2073 
504 |a Cheng, Y., Ramos, D., Lee, P., Liang, D., Yu, X., Kumbar, S.G., Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering (2014) J. Biomed. Nanotechnol., 10, p. 287 
504 |a Remya, K.R., Joseph, J., Mani, S., John, A., Varma, H.K., Ramesh, P., Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglyco l-polycaprolactone blend scaffold for bone tissue engineering applications (2013) J. Biomed. Nanotechnol., 9, p. 1483 
504 |a Lee, J.B., Park, H.N., Ko, W.K., Bae, M.S., Heo, D.N., Yang, D.H., Kwon, I.K., Poly(L-lactic acid)/hydroxyapatite nanocylinders as nanofibrous structure for bone tissue engineering scaffolds (2013) J. Biomed. Nanotechnol., 9, p. 424 
504 |a Zargarian, S.S., Haddadi-Asl, V., A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning (2010) Iran. Polym J., 19, p. 457 
504 |a Zheng, W., Zhang, W., Jiang, X., Biomimetic collagen nanofibrous materials for bone tissue engineering (2010) Adv. Eng. Mater, 12, p. B451 
504 |a Gergely, G., Lukács, I.E., Tóth, M., Illés, L., Wéber, F., Balázsi, Cs., Hydroxyapatite biopolymer mats by electrospinning (2010) Eur. Cells Mater., 20, p. 9 
504 |a Poinern, G.E.J., Brundavanam, R.K., Fawcett, D., Nanometre scale hydroxyapatite ceramics for bone tissue engineering. Am (2013) J. Biomed. Eng., 3, p. 148 
504 |a Tavakoli-Darestani, R., Kazemian, G., Emami, M., Kamrani-Rad, A., Poly(lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering (2013) Novel. Biomed., 1, p. 8 
504 |a Lao, L., Wang, Y., Zhang, Y., Zhu, Y., Gao, C., Poly(lactide-coglycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering (2011) Mater. Med., 22, p. 1873 
504 |a Krucińska, I., Boguń, M., Chrzanowska, O., Chrzanowski, M., Król, P., Research concerning fabrication of fibrous osteoconductive PLGA/HAp nanocomposite material using the method of electrospinning from polymer solution (2013) AUTEX Res. J., 13, p. 57 
504 |a Nivison-Smith, L., Weiss, A.S., Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers (2012) J. Biomed. Mater. Res., 100, p. 155 
504 |a Aviss, K.J., Gough, J.E., Downes, S., Aligned electrospun polymer fibers for skeletal muscle regeneration (2010) Eur. Cells Mater., 19, p. 193 
504 |a Ravichandran, R., Venugopal, J.R., Sundarrajan, S., Mukherjee, S., Ramakrishna, S., Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly(glycerol sebacate)/collagen core/shell fibers (2013) World J. Cardiol., 26, p. 28 
504 |a Xu, Y., Wu, J., Wang, H., Li, H., Di, N., Song, L., Li, S., Zhou, Q., Fabrication of electrospun poly(L-lactide-co-e-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering (2013) Tissue Eng C, 19, p. 925 
504 |a Chainani, A., Hippensteel, K.J., Kishan, A., Garrigues, N.W., Ruch, D.S., Guilak, F., Little, D., Multilayered electrospun scaffolds for tendon tissue engineering (2013) Tissue Eng. Part A, 19, p. 2594 
504 |a Graham, M.V., Cady, N.C., Nano and microscale topographies for the prevention of bacterial surface fouling (2014) Coatings, 4, p. 37 
504 |a Sharma, U., Pham, Q., Marini, J., (2013) Electrospinning Process for Fiber Manufacture 
504 |a Sharma, U., Pham, Q., Marini, J., Yan, X., Core, L., (2013) Electrospinning Process for Manufacture of Multi-Layered Structures 
504 |a Sunthornvarabhas, J., Reneker, D.H., Chase, G.G., (2012) Bubble Launched Electrospinning Jets 
504 |a Xu, W., Lee, S.J., Recent patents on implantable drug/protein delivery systems fabricated using electrospinning (2012) Recent. Pat. Biomed. Eng., 5, p. 14 
504 |a Shabafrooz, V., Mozafari, M., Vashaee, D., Tayebi, L., Electrospun nanofibers: From filtration membranes to highly specialized tissue engineering scaffolds (2014) J. Nanosci. Nanotechnol., 14, p. 522 
504 |a Taylor, G., Electrically driven jets (1969) Proc. R. Soc. Lond., A313, p. 453 
504 |a Li, Z., Wang, C., (2013) One-Dimensional Nanostructures, Electrospinning Technique and Unique Nanofibers, pp. 1-13. , edited by Z. Li and C. Wang, Springer Briefs in Materials, Berlin Chap. 1 
504 |a Seth, A., Katti, D.S., A one-step electrospray-based technique for modulating morphology and surface properties of poly(lactideco-glycolide) microparticles using pluronics® (2012) Int. J. Nanomed., 7, p. 5129 
504 |a Hao, S., Wang, Y., Wang, B., Deng, J., Liu, X., Liu, J., Rapid preparation of pH-sensitive polymeric nanoparticle with high loading capacity using electrospray for oral drug delivery (2013) Mater. Sci. Eng., C33, p. 4562 
504 |a Nartetamrongsutt, K., Chase, G.G., The influence of salt and solvent concentrations on electrospun polyvinylpyrrolidone fiber diameters and bead formation (2013) Polymer, 54, p. 2166 
504 |a Teo, W.E., Ramakrishna, S., A review on electrospinning design and nanofibre assemblies (2006) Nanotechnology, 17, p. 89 
504 |a Hong, J.K., Xu, G., Piao, D., Madihally, S.V., Analysis of void shape and size in the collector plate and polycaprolactone molecular weight on electrospun scaffold pore size (2013) J. Appl. Polym. Sci., 128, p. 1583 
504 |a Wang, Y., Wang, G., Chen, L., Li, H., Yin, T., Wang, B., Lee, J.C., Yu, Q., Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds (2009) Biofabrication, 1, p. 1 
504 |a Tong, H.W., Wang, M.J., Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications (2007) Nanosci. Nanotechnol., 7, p. 3834 
504 |a Liu, Z., Li, X., Yang, Y., Zhang, K., Wang, X., Zhu, M., Hsiao, B.S., Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning (2013) Polymer, 54, p. 6045 
504 |a Nivison-Smith, L., Weiss, A.S., Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers (2012) J. Biomed. Mater. Res., A100, p. 155 
504 |a Shalumon, K.T., Sathish, D., Nair, S.V., Chennazhi, K.P., Tamura, H., Jayakumar, R., Fabrication of aligned poly(lactic acid)-chitosan nanofibers by novel parallel blade collector method for skin tissue engineering (2012) J. Biomed. Nanotechnol., 8, p. 405 
504 |a Teo, W.E., Kotaki, M., Mo, X.M., Ramakrishna, S., Porous tubular structures with controlled fibre orientation using a modified electrospinning method (2005) Nanotechnology, 16, p. 918 
504 |a Wu, J., Huang, C., Liu, W., Yin, A., Chen, W., He, C., Wang, H., Mo, X., Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning (2013) J. Biomed. Nanotechnol., 10, p. 603 
504 |a Sood, S., Divya, S., Gouma, P., High throughput electrospinning of 3D nano fibrous mats (2014) J. Nanoeng. Nanomanuf., 4, p. 39 
504 |a Bazilevsky, A.V., Yarin, A.L., Megaridis, C.M., Coelectrospinning of core-shell fibers using a single-nozzle technique (2007) Langmuir, 23, p. 2311 
504 |a Ji, X., Yang, W., Wang, T., Mao, C., Guo, L., Xiao, J., He, N., Coaxially electrospun core/shell structured poly(L-lactide) aacid/chitosan nanofibers for potential drug carrier in tissue engineering (2013) J. Biomed. Nanotechnol., 9, p. 1672 
504 |a Viry, L., Moulton, S.E., Romeo, T., Suhr, C., Mawad, D., Cook, M., Gordon, W.G., Emulsion-coaxial electrospinning: Designing novel architectures for sustained release of highly soluble low molecular weight drugs (2012) J. Mater. Chem., 22, p. 11347 
504 |a Yu, D.G., Zhou, J., Chatterton, N.P., Li, Y., Huang, J., Wang, X., Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process (2012) Int. J. Nanomed., 7, p. 5725 
504 |a Nguyen, T.T.T., Ghosh, C., Hwang, S., Chanunpanich, N., Park, J.S., Porous Core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system (2012) Int. J. Pharm., 439, p. 296 
504 |a Tijing, L.D., Ruelo, M.T.G., Amarjargal, A., Pant, H.R., Park, C., Kim, C.S., One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide))-polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning (2012) Mater. Chem. Phys., 134, p. 557 
504 |a Toncheva, A., Paneva, D., Manolova, N., Rashkov, I., Mita, L., Crispi, S., Damiano, G.M., Dual versus single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials (2013) Colloids Surface A, 439, p. 176 
504 |a Lin, T., (2011) Nanofibers-Production, Properties and Functional Applications, , InTech, Rijeka, Croatia 
504 |a Yarin, A.L., Zussman, E., Upward needleless electrospinning of multiple nanofibers (2004) Polymer, 45, p. 2977 
504 |a He, J., Kong, H., Yang, R., Dou, H., Faraz, N., Wang, L., Feng, C., Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning (2012) Therm. Sci., 16, p. 1263 
504 |a Tang, S., Zeng, Y., Wang, X., Splashing needleless electrospinning of nanofibers (2010) Polym. Eng. Sci., 50, p. 2252 
504 |a Bhattacharyya, S., Nair, L.S., Singh, A., Krogman, N.R., Greish, Y.E., Brown, P.W., Allcock, H.R., Laurencin, C.T., Electrospinning of poly[bis(ethyl alanato)phosphazene]nanofibers (2006) J. Biomed. Nanotechnol., 2, p. 36 
504 |a Bölgen, N., Menceloǧlu, Y.Z., Acatay, K., Vargel, I., Pişkin, E., Vitro and in vivo degradation of non-woven materials made of poly(ϵ-caprolactone) nanofibers prepared by electrospinning under different conditions (2005) J. Biomat. Sci. Polym. E, 16, p. 1537 
504 |a Chowdhury, M., Stylios, G., Effect of experimental parameters on the morphology of electrospun nylon 6 fibres (2010) Int. J. Basic Appl. Sci., 10, p. 70 
504 |a Zhang, D., Karki, A.B., Rutman, D., Young, D.P., Wang, A., Cocke, D., Ho, T.H., Guo, Z., Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3 O4 nanoparticles: Fabrication and property analysis (2009) Polymer, 50, p. 4189 
504 |a Haghi, A.K., Hamrang, A., (2014) Foundations of High Performance Polymers: Properties, Performance and Applications, pp. 181-183. , edited by A. Hamrang and B. A. Howell, CRC Press Taylor & Francis Group, Oakville 
504 |a Zhu, J., Wei, S., Chen, X., Karki, A.B., Rutman, D., Young, D.P., Guo, Z., Electrospun polyimide nanocomposite fibers reinforced with core-shell Fe-FeO nanoparticles (2010) J. Phys. Chem., C114, p. 8844 
504 |a Rodoplu, D., Mutlu, M., Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces (2012) J. Eng. Fibers Fabr., 7, p. 118 
504 |a Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B., Rabolt, J.F., Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process (2004) Macromolecules, 37, p. 573 
504 |a Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A.S., Damerchely, R., The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber (2012) J. Eng. Fibers Fabr., 7, p. 42 
504 |a Liu, F., Guo, R., Shen, M., Wang, S., Shi, X., Effect of processing variables on the morphology of electrospun poly[(lactic acid)-co-(glycolic acid)] nanofibers (2009) Macromol. Mater. Eng., 294, p. 666 
504 |a Yao, S., Wang, X., Liu, X., Wang, R., Deng, C., Cui, F., Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers (2013) J. Nanosci. Nanotechnol., 13, p. 4752 
504 |a De Vrieze, S., Van Camp, T., Nelvig, A., Hagstrom, B., Westbroek, P., De Clerck, K., The effect of temperature and humidity on electrospinning (2009) J. Mater. Sci., 44, p. 1357 
504 |a Yan, N., Zhang, X., Cai, Q., Yang, X., Zhou, X., Wang, B., Deng, X., The effects of lactidyl/glycolidyl ratio and molecular weight of poly(D,L-lactide-co-glycolide) on the tetracycline entrapment and release kinetics of drug-loaded nanofibers (2012) J. Biomat. Sci., Polym. E, 23, p. 1005 
504 |a Nasouri, K., Shoushtari, A.M., Kaflou, A., Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and berry number (2012) Micro Nano Lett., 7, p. 423 
504 |a Nasefa, M.M., Abbasia, A., Faridi-Majidib, R., Takeshic, M., The effect of solution viscosity and concentration on morphological properties of electrospun nylon-6,6 nanofibers (2012) Conference on Emerging Energy and Process Technology, 1, pp. 1-2 
504 |a Qian, Y.-F., Su, Y., Li, X.-Q., Wang, H.-S., He, C.-L., Electrospinning of polymethyl methacrylate nanofibres in different solvents (2010) Iran. Polym J., 19, p. 123 
504 |a Cengiz-Çalloǧlu, F., Jirsak, O., Dayik, M., The influence of non-solvent addition on the independent and dependent parameters in roller electrospinning of polyurethane (2013) J. Nanosci. Nanotechnol., 13, p. 4727 
504 |a Qi, Z., Yu, H., Chen, Y., Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid) (2009) Mater. Lett., 63, p. 415 
504 |a Ji, X., Wang, T., Guo, L., Xiao, J., Li, Z., Zhang, L., Deng, Y., He, N., Effect of nanoscale-ZnO on the mechanical property and biocompatibility of electrospun poly(L-lactide) acid/nanoscale-ZnO mats (2013) J. Biomed. Nanotechnol., 9, p. 417 
504 |a Nirmala, R., Kalpana, D., Navamathavan, R., Lee, Y.S., Kim, H.Y., Preparation and characterizations of silver incorporated polyurethane composite nanofibers via electrospinning for biomedical (2013) J. Nanosci. Nanotechnol., 13, p. 4686 
504 |a Jiu, L., Qin, X.-H., The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers (2013) J. of Therm Anal Calorim., 112, p. 595 
504 |a Pierschbacher, M.D., Ruoslahti, E., Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule (1984) Nature, 309, p. 30 
504 |a Kim, H.-W., (2012) Handbook of Intelligent Scaffold for Tissue Engineering and Regenerative Medicine, pp. 273-287. , edited by G. Khang, Pan Stanford Publishing Pte Ltd Singapore Chap. 14 
504 |a Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Balasubramanian, P., Jin, G., Valipouri, A., Ramakrishna, S., Advances in electrospun nanofibers for bone and cartilage regeneration (2013) J. Nanosci. Nanotechnol., 13, p. 4656 
504 |a Shapiro, J.A., Thinking about bacterial populations as multicellular organisms (1998) Annu. Rev. Microbiol., 52, p. 81 
504 |a Davies, D., Understanding biofilm resistance to antibacterial agents (2003) Nature Rev. Drug Discov., 2, p. 114 
504 |a Xu, L.C., Siedlecki, C.A., Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation (2012) Acta Biomater, 8, p. 72 
504 |a Van Tienen, T.G., Heijkants, R.G., Buma, P., De Groot, J.H., Pennings, A.J., Veth, R.P., Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes (2002) Biomaterials, 23, p. 1731 
504 |a Lee, J.M., Sheikh, F.A., Ki, C.S., Ju, H.W., Lee, O.J., Moon, B.M., Park, H.J., Park, C.H., Facile pore structure control of poly(ϵ-caprolactone) nano-fibrous scaffold by salt-dispenser aided electrospinning (2013) J. Nanoeng. Nanomanuf., 3, p. 269 
504 |a Stankus, J.J., Soletti, L., Fujimoto, K., Hong, Y., Vorp, D.A., Wagner, W.R., Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization (2007) Biomaterials, 28, p. 2738 
504 |a Jayasinghe, S.N., Warnes, G., Scotton, C.J., Bio-electrosprayed living composite matrix implanted into mouse models (2011) Macromol. Biosci, 11, p. 1364 
504 |a Leong, M.F., Rasheed, M.Z., Limand, T.C., Chian, K.S., Vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique (2009) J. Biomed. Mater. Res. A, 91, p. 231 
504 |a Baker, B.M., Gee, A.O., Metter, R.B., Nathan, A.S., Marklein, R.A., Burdick, J.A., The, R.L., Mauck. Potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers (2008) Biomaterials, 29, p. 2348 
504 |a Phipps, M.C., Clem, W.C., Grunda, J.M., Clines, G.A., Bellis, S.L., Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration (2012) Biomaterials, 33, p. 524 
504 |a Wang, K., Xu, M., Zhu, M., Su, H., Wang, H., Kong, D., Wang, L., Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration (2013) J. Biomed. L Mater. Res., A101, p. 3474 
504 |a Calderini, G., Valle, F.D., Rastrelli, A., Romeo, A., (1997) Biocompatible Perforated Membranes, Processes for Their Preparation, Their Use as a Support in the in Vitro Growth of Epithelial Cells, the Artificial Skin Obtained in this Manner, and Its Use in Skin Grafts 
504 |a Lee, B.L., Jeon, H., Wang, A., Yan, Z., Yu, J., Grigoropoulos, C., Li, S., Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds (2012) Acta Biomater, 8, p. 2648 
504 |a Fatehi, F., Natural scaffold materials used in regenerative endodontic: A review (2013) J. Biomater. Tissue Eng, 3, p. 597 
504 |a Lou, T., Leung, M., Wang, X., Chang, J.Y.F., Tsao, C.T., Sham, J.G.C., Edmondson, D., Zhang, M., Bi-layer scaffold of chitosan/PCL-nanofibrous Mat and PLLA-microporous disc for skin tissue engineering (2014) J. Biomed. Nanotechnol., 10, p. 1105 
504 |a Ruckh, T.T., Carroll, D.A., Weaver, J.R., Popat, K.C., Mineralization content alters osteogenic responses of bone marrow stromal cells on hydroxyapatite/polycaprolactone composite nanofiber scaffolds (2012) J. Funct. Biomater., 3, p. 776 
504 |a Jin, L., Wang, T., Zhu, M.L., Leach, M.K., Naim, Y.I., Corey, J.M., Feng, Z.Q., Electrospun fibers and tissue engineering (2012) J. Biomed. Nanotechnol., 8, p. 1 
504 |a Chiu, J.B., Luu, Y.K., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrou, M., Electrospun nanofibrous scaffolds for biomedical applications (2005) J. Biomed. Nanotechnol, 1, p. 115 
504 |a Seidi, A., Sampathkumar, K., Srivastava, A., Ramakrishna, S., Ramalingam, M., Gradient nanofiber scaffolds for tissue engineering (2013) J. Nanosci. and Nanotechnol., 13, p. 4647 
504 |a Beachley, V., Serpe, A., Hepfer, R.G., Wen, X., Surface functionalization of electrospun polyurethane scaffolds using blended polymer solutions (2013) J. Biomater. Tissue Eng., 3, p. 472 
504 |a He, X., Fu, W., Feng, B., Wang, H., Liu, Z., Yin, M., Wang, W., Zheng, J., Electrospun collagen/poly(L-lactic acid-co-ϵcaprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering (2013) J. Nanosci. Nanotechnol, 13, p. 3818 
504 |a Chen, M., Patra, P.K., Lovett, M.L., Kaplan, D.L., Bhowmick, S., Role of electrospun fiber diameter and corresponding specific surface area (SSA) on cell attachment (2009) J. Tissue Eng. Regen. Med., 3, p. 269 
504 |a Lord, M.S., Foss, M., Besenbacher, F., Influence of nanoscale surface topography on protein adsorption and cellular response (2010) Nano Today, 5, p. 66 
504 |a Miller, D.C., Haberstroh, K.M., Webster, T.J., Mechanism of increased vascular cell adhesion on nanostructured Poly(lactic-coglycolic acid) films (2005) J. Biomed. Mater. Res. A, 73 A, p. 476 
504 |a Cousins, B.G., Doherty, P.J., Williams, R.L., Fink, J., Garvey, M.J., The effect of silica nanoparticulate coatings on cellular response (2004) J. Mater. Sci. -Mater. M, 15, p. 355 
504 |a Rice, J.M., Hunt, J.A., Gallagher, J.A., Hanarp, P., Sutherland, D.S., Gold, J., Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro (2003) Biomaterials, 24, p. 4799 
504 |a Fan, Y.W., Cui, F.Z., Hou, S.P., Xu, Q.Y., Chen, L.N., Lee, I.S., Culture of neural cells on silicon wafers with nano-scale surface topograph (2002) J. Neurosci. Meth., 120, p. 17 
504 |a Buttiglieri, S., Pasqui, D., Migliori, M., Johnstone, H., Affrossman, S., Sereni, L., Wratten, M.L., Camussi, G., Endothelization and adherence of leucocytes to nanostructured surfaces (2003) Biomaterials, 24, p. 2731 
504 |a Doustgani, A., Vheghani-Farahani, E., Soleimani, M., Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering (2013) Nanomed. J., 1, p. 20 
504 |a Nien, Y.H., Wang, J.Y., Tsai, Y.S., The preparation and characterization of highly aligned poly(ϵ-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold (2013) J. Nanosci. Nanotechnol., 13, p. 4703 
504 |a Guan, J., Fujimoto, K.L., Sacks, M.S., Wagner, W.R., Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications (2005) Biomaterials, 26, p. 3961 
504 |a Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K.J., Madihally, S.V., Köhler, G.A., Tayebi, L., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering (2014) J. Biomed Nanotechnol., 10, p. 911 
504 |a Wu, J., Huang, C., Yin, A., Chen, W., He, C., Wang, H., Liu, S., Mo, X., Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning (2013) J. Biomed. Nanotechnol., 10, p. 603 
504 |a Gray, H., (2000) Anatomy of the Human Body, 1918. , Lea & Febiger, Philadelphia 
504 |a Rho, J.Y., Kuhn-Spearing, L., Zioupos, P., Mechanical properties and the hierarchical structure of bone (1998) Med. Eng. Phys., 20, p. 92 
504 |a Steffens, D., Lersch, M., Rosa, A., Scher, C., Crestani, T., Morais, M.G., Costa, J.A.V., Pranke, P., A new biomaterial of nanofibers with the microalga spirulina as scaffolds to cultivate with stem cells for use in tissue engineering (2012) J. Biomed. Nanotechnol., 9, p. 710 
504 |a Wang, X., Ding, B., Li, B., Biomimetic electrospun nanofibrous structures for tissue engineering (2013) Mater. Today, 16, p. 229 
504 |a Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E., Scaffold design for bone regeneration (2014) J. Nanosci. Nanotechnol., 14, p. 15 
504 |a Mkhabela, V.J., Ray, S.S., Poly(ϵ-caprolactone) nanocomposite scaffolds for tissue engineering: A brief overview (2014) J. Nanosci. Nanotechnol., 14, p. 535 
504 |a Yazdimamaghani, M., Vashaee, D., Assefa, S., Walker, K.J., Madihally, S.V., Köhler, G.A., Tayebi, L., Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering (2014) J. Biomed Nanotechnol., 10, p. 911 
504 |a Friess, W., Collagen biomaterial for drug delivery (1998) Eur. J. Pharm. Biopharm., 45, p. 113 
504 |a Teng, S.H., Lee, E.J., Wang, P., Kim, H.E., Collagen/hydroxyapatite composite nanofibers by electrospinning (2008) Matter. Lett., 62, p. 3055 
504 |a Jo, J.H., Lee, E.J., Shin, D.S., Kim, H.E., Kim, H.W., Koh, Y.H., Jang, J.H., Vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ϵ-caprolactone) composite materials (2009) J. Biomed. Mater. Res. B, 91 B, p. 213 
504 |a Datta, P., Gosh, P., Gosh, K., Maity, P., Samanta, S.K., Gosh, S.K., Mahapatra, P.K.D., Dhara, S., Vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N -methylene posphonic chitosan nanofiber for bone regeneration (2012) J. Biomed. Nanotechnol., 9, p. 870 
504 |a Venugopal, J., Prabhakaran, M.P., Zhang, Y., Low, S., Choon, A.T., Ramakrishna, S., Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering (2010) Phil. Trans. R. Soc., 368, p. 2065 
504 |a Suganya, S., Venugopal, J., Ramakrishna, S., Lakshmi, B.S., Dev, V.R.G., Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis (2014) J. Biomater. Tissue Eng., 4, p. 9 
504 |a Shalumon, K.T., Sowmya, S., Sathish, D., Chennazhi, K.P., Nair, S.V., Jayakumar, R., Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering (2013) J. Biomed. Nanotechnol., 9, p. 430 
504 |a Nelson, C., Magge, A., Bernard, T.S.T., Khan, Y., Laurencin, C.T., Nanostructured composites for bone repair (2013) J. Biomater. Tissue Eng., 3, p. 426 
504 |a Zong, C., Qian, X., Tang, Z., Hu, Q., Chen, J., Gao, C., Tang, R., Wang, J., Biocompatibility and bone-repairing effects: Comparison between porous poly-lactic-co-glycolic acid and nanohydroxyapatite/poly(lactic acid) scaffolds (2014) J. Biomed Nanotechnol., 10, p. 1091 
504 |a Ito, Y., Hasudaa, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.K., Kwon, O.H., A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material (2005) J. Biosci. Bioeng., 100, p. 43 
504 |a Sreerekha, P.R., Menon, D., Nair, S.V., Chennazhi, K.P., Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications (2012) J. Biomed. Nanotechnol., 9, p. 790 
504 |a Yoshimoto, H., Shina, Y.M., Teraia, H., Vacantia, J.P., A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering (2003) Biomaterials, 24, p. 2077 
504 |a Shin, M., Yoshimoto, H., Vacanti, J.P., Vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold (2004) Tissue Eng, 10, p. 33 
504 |a Costa-Pinto, A.R., Reis, R.L., Neves, N.M., Scaffolds based bone tissue engineering: The role of chitosan (2011) Tissue Eng, 17, p. 331 
504 |a Sun, K., Li, Z.H., Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering (2011) Express Polym. Lett., 5, p. 342 
504 |a Thien, D.V.H., Hsiao, S.W., Ho, M.H., Li, C.H., Shih, J.L., Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering (2013) J. Mater. Sci., 48, p. 1640 
504 |a Zhang, J.G., Mo, X.M., Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers (2013) Front. Mater. Sci., 7, p. 129 
504 |a Mina, B.M., Leea, G., Kimb, S.H., Namb, Y.S., Leeb, T.S., Parkb, W.H., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro (2004) Biomaterials, 25, p. 1289 
504 |a Alessandrino, A., Marelli, B., Arosio, C., Fare, S., Tanzi, M.C., Freddi, G., Electrospun silk fibroin mats for tissue engineering (2008) Eng. Life Sci., 8, p. 219 
504 |a Jin, H.J., Chen, J., Karageorgiou, V., Altman, G.H., Kaplan, D.L., Human bone marrow stromal cell responses on electrospun silk fibroin mats (2004) Biomaterials, 25, p. 1039 
504 |a Meinel, A.J., Kubow, K.E., Klotzsch, E., Garcia-Fuentes, M., Smith, M.L., Vogel, V., Merkle, H.P., Meinel, L., Optimization strategies for electrospun silk fibroin tissue engineering scaffolds (2009) Biomaterials, 30, p. 3058 
504 |a Tsioptsias, C., Sakellariou, K.G., Tsivintzelis, I., Papadopoulou, L., Panayiotou, C., Preparation and characterization of cellulose acetate-Fe 2 O 3 composite nanofibrous materials (2010) Carbohyd. Polym., 81, p. 925 
504 |a Frey, M.W., Electrospinning cellulose and cellulose derivatives (2008) Polym. Rev., 48, p. 378 
504 |a Zhou, C., Shi, Q., Guo, W., Terrell, L., Qureshi, A.T., Hayes, D.J., Wu, Q., Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA (2013) Appl. Mater. Interfaces, 5, p. 3847 
504 |a Chahal, S., Shahitha, F., Hussain, J., Yusoff, M.M., Characterization of modified cellulose (MC)/poly(vinyl alcohol) electrospun nanofibers for bone tissue engineering (2013) Procedia Eng, 53, p. 683 
504 |a Binulal, N.S., Natarajan, A., Menon, D., Bhaskaran, V.K., Mony, U., Nair, S.V., PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering (2013) J. Biomater. Sci., 25, p. 325 
504 |a Liu, Y., Luo, D., Liu, S., Fu, Y., Kou, X., Wang, X., Sha, Y., Zhou, Y., Effect of nanostructure of mineralized collagen scaffolds on their physical properties and osteogenic potential (2014) J. Biomed. Nanotechnol., 10, p. 1049 
504 |a Elias, C.N., Lima, J.H.C., Valiev, R., Meyers, M.A., Biomedical applications of titanium and its alloys (2008) JOM, 60, p. 46 
504 |a Niinomi, M., Recent research and development in titanium alloys for biomedical applications and healthcare goods (2003) Sci. Technol. Adv. Mat., 4, p. 445 
504 |a Liu, X., Chu, P.K., Ding, C., Surface modification of titanium, titanium alloys, and related (2004) Mater. Sci. Eng. R, 47, p. 49. , materials for biomedical applications 
504 |a Santhosh, S., Prabu, S.B., Nanohidroxyapatitepolysulfone coating on Ti-6AI-4V substrate by electrospinning (2013) Int. J. Mater. Res., 104, p. 1254 
504 |a Iafisco, M., Quirici, N., Foltran, I., Rimondini, L., Collagen mimicking the reconstituted extracellular matrix improves osteoblastic differentiation onto titanium surfaces (2013) J. Nanosci. Nanotechnol., 13, p. 4720 
504 |a Mendonça, G., Mendonça, D.B.S., Aragaõ, F.J.L., Cooper, L.F., Advancing dental implant surface technology-from micro to nanotopography (2008) Biomaterials, 29, p. 3822 
504 |a Kelm, J., Regitz, T., Schmitt, E., Jung, W., Anagnostakos, K., Vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers (2006) Antimicrobial Agents and Chemotherapy, 50, p. 332 
504 |a Insall, J.N., Thompson, F.M., Brause, B.D., Two-stage reimplantation for the salvage of infected total knee arthroplasty (1983) J. Bone Joint Surg. Am., 65, p. 1087 
504 |a Haddad, F.S., Masri, B.A., Campbell, D., McGraw, R.W., Beauchamp, C.P., Duncan, C.P., The PROSTALAC functional spacer in two-stage revision for infected knee replacements (2000) J. Bone Joint Surg., 82, p. 807 
504 |a Hsieh, P.H., Shih, C.H., Chang, Y.H., Lee, M.S., Shih, H.N., Yang, W.E., Two-stage revision hip arthroplasty for infection: Comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis (2004) J. Bone Joint Surg. Am., 86, p. 1989 
504 |a Yamamoto, K., Miyagawa, N., Masaoka, T., Katori, Y., Shishido, T., Imakiire, A., Cement spacer loaded with antibiotics for infected implants of the hip joint (2009) J. Arthroplasty, 24, p. 83 
504 |a Li, L.L., Wang, L.M., Xu, Y., Lv, L.X., Preparation of gentamicin-loaded electrospun coating on titanium implants and a sudy of their properties in vitro (2012) Arch. Orthop. Trauma Surg., 132, p. 897 
504 |a Rossi, C.A., Flaibani, M., Blaauw, B., Pozzobon, M., Figallo, E., Reggiani, C., Vitiello, L., De Coppi, P., Vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel (2011) FASEB J, 25, p. 2296 
504 |a Ayele, T., Zuki, A.B.Z., Noordin, M.M., Noorjahan, B.M.A., Engineering of skeletal muscle tissue using myoblast-seeded bovine pericardium for reconstruction of abdominal wall defect in a rabbit model (2010) J. Biomimetics, Biomater. Tissue Eng., 8, p. 9 
504 |a McLaughlin, S.W., Nelson, S.J., McLaughlin, W.M., Nair, L.S., Laurencin, C.T., Design of nanofibrous scaffolds for skeletal muscle regenerative engineering (2013) J. Biomater. Tissue Eng., 3, p. 385 
504 |a Allen, R.E., Boxhorn, L.K., Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor (1989) J. Cell Physiol., 138, p. 311 
504 |a Allen, R.E., Boxhorn, L.K., Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta (1987) J. Cell Physiol., 133, p. 567 
504 |a Sirivisoot, S., Harrison, B.S., Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. International (2011) J. Nanomed., 6, p. 2483 
504 |a Gabella, G., (1997) Cellular Aspects of Smooth Muscle Function, pp. 1-48. , edited by C. Y. Kao and M. E. Carsten, Cambridge University Press, Cambridge Chap. 1 
504 |a Obregón, R., Ramón-Azcón, J., Ahadian, S., Shiku, H., Bae, H., Ramalingam, M., Matsue, T., The use of microtechnology and nanotechnology in fabricating vascularized tissues (2014) J. Nanosci. Nanotechnol., 14, p. 487 
504 |a Patra, S., Remy, M., Ray, A.R., Brouillaud, B., Amedee, J., Gupta, B., Bordenave, L., A novel route to polycaprolactone scaffold for vascular tissue (2013) J. Biomater. Tissue Eng., 3, p. 289 
504 |a Rogers, L., Said, S.S., Mequanint, K., The effects of fabrication strategies on 3D scaffold morphology, porosity, and vascular smooth muscle cell response (2013) J. Biomater. Tissue Eng., 3, p. 300 
504 |a Huu, A.L., Paul, A., Xu, L., Prakash, S., Shum-Tim, D., Recent advancements in tissue engineering for stem cell-based cardiac therapies (2013) Ther. Deliv., 4, p. 503 
504 |a Ahvaz, H.H., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Naji, M., Dodel, M., Soleimani, M., Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering (2013) J. Nanosci. Nanotechnol., 13, p. 4736 
504 |a Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S., Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering (2004) Biomaterials, 25, p. 877 
504 |a Stankus, J.J., Guan, J., Fujimoto, K., Wagner, W.R., Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix (2006) Biomaterials, 27, p. 735 
504 |a Lee, C.H., Lim, Y.C., Farson, D.F., Powell, H.M., Lannutti, J.J., Vascular wall engineering via femtosecond laser ablation: Scaffolds with self-containing smooth muscle cell populations (2011) Ann. Biomed. Eng., 39, p. 3031 
504 |a Dowell, J.D., Rubart, M., Pasumarthi, K.B.S., Soonpaa, M.H., Field, L.J., Myocyte and myogenic stem cell transplantation in the heart (2003) Cardiovas. Res., 58, p. 336 
504 |a Templin, C., Lüscher, T.F., Landmesser, U., Cell-based cardiovascular repair and regeneration in acute myocardial infarction and chronic ischemic cardiomyopathy-current status and future developments (2011) Int. J. Dev. Biol., 55, p. 407 
504 |a Forrester, J.S., White, A.J., Matsushita, S., Chakravarty, T., Makkar, R.R., New paradigms of myocardial regeneration postinfarction: Tissue preservation, cell environment, and pluripotent cell sources (2009) JACC Cardiovasc. Interv., 2, p. 1 
504 |a Orlic, D., Hill, J.M., Arai, A.E., Stem cells for myocardial regeneration (2002) Circ Res, 91, p. 1092 
504 |a Hussain, A., Collins, G., Yip, D., Cho, C.H., Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds (2013) Biotechnol. Bioeng, 110, p. 637 
504 |a Kai, D., Prabhakaran, M.P., Jin, G., Ramakrishna, S., Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering (2011) J. Biomed. Mater. Res. B, 98 B, p. 379 
504 |a Kai, D., Prabhakaran, M.P., Jin, G., Ramakrishna, S., Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering (2011) J. Biomed. Mater. Res. A, 99 A, p. 376 
504 |a Balguid, A., Mol, A., Van Marion, M.H., Bank, R.A., Bouten, C.V.C., Baaijens, F.P.T., Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering (2009) Tissue Eng. A, 15, p. 437 
504 |a Reverchon, E., Baldino, L., Cardea, S., De Marco, I., Biodegradable synthetic scaffolds for tendon regeneration (2012) Muscles Ligaments Tendons J, 2, p. 181 
504 |a Bosworth, L.A., Alam, N., Wong, J.K., Downes, S., Investigation of 2D and 3D electrospun scaffolds intended for tendon repair (2013) J. Mater Sci. Mater Med., 24, p. 1605 
504 |a Lee, K.L., Ngai, G.A., Varghese, S.C., Duan, L., Cooper, J.A., Nanostructures for ligament and tendon regeneration (2013) J. Biomater. Tissue Eng., 3, p. 409 
504 |a Chainani, A., Hippensteel, K.J., Kishan, A., Garrigues, N.W., Ruch, D.S., Guilak, F., Little, D., Multilayered electrospun scaffolds for tendon tissue engineering (2013) Tissue Eng A, 19, p. 2594 
504 |a Schmidt, C.E., Leach, J.B., Neural tissue engineering: Strategies for repair and regeneration (2003) Annu. Rev. Biomed., 5, p. 293 
504 |a Berriman, L., (2008) Fundamentals of Anatomy and Physiology, Pearson Benjamin Cummings, , San Francisco, CA 
504 |a Jacobsen, S., Guth, L., An electrophysiological study of the early stages of peripheral nerve regeneration (1965) Exp. Neurol., 11, p. 48 
504 |a Timnak, A., Gharebaghi, F.Y., Shariati, R.P., Bahrami, S.H., Javadian, S., Emami, S.H., Shokrgozar, M.A., Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering (2011) J. Mater. Sci. Mater. Med., 22, p. 1555 
504 |a Xu, J., Shawnh, L., Hai-Quan, M., Singyian, C., Current applications and future perspectives of artificial nerve conduits (2010) Exp. Neurol., 223, p. 86 
504 |a Ide, C., Peripheral nerve regeneration (1996) Neurosci. Res., 25, p. 101 
504 |a Chew, S.Y., Mi, R., Hoke, A., Leong, K.W., Aligned proteinpolymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform (2007) Adv. Funct. Mater., 17, p. 1288 
504 |a Griffin, J., Delgado-Rivera, R., Meiners, S., Uhrich, K.E., Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system (2011) J. Biomed. Mater. Res. A, 97, p. 230 
504 |a Kim, Y.T., Haftel, V.K., Kumar, S., Bellamkonda, R.V., The role of aligned polymer fiber-based constructs in the bridging long peripheral nerve gaps (2008) Biomaterials, 9, p. 3117 
504 |a Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M., Ramakrishna, S., Electrospun poly(ϵ-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering (2008) Biomaterials, 29, p. 4532 
504 |a Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., Gilbert, R.J., Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications (2009) J. Neural. Eng., 6, p. 1 
504 |a McDonald, J.W., Howard, M.J., Spinal cord trauma: Regeneration, neural repair and functional recovery (2002) Prog. Brain Res., 137, p. 299 
504 |a Popovich, P.G., Wei, P., Stokes, B.T., Cellular inflammatory response after spinal cord injury in sprague-dawley and lewis rats (1997) J. Comp. Neurol., 377, p. 443 
504 |a Beck, K.D., Nguyen, H.X., Galvan, M.D., Salazar, D.L., Woodruff, T.M., Anderson, A.J., Quantitative analysis of cellular inflammation after traumatic spinal cord injury: Evidence for a multiphasic inflammatory response in the acute to chronic environment (2010) Brain, 133, p. 433 
504 |a Liu, T., Houle, J.D., Xu, J., Chan, B.P., Chew, S.Y., Nanofibrous collagen nerve conduits for spinal cord repair (2012) Tissue Eng. Part A, 18, p. 1057 
504 |a Chow, W.N., Simpson, D.G., Bigbee, J.W., Colello, R.J., Evaluating neuronal and glial growth on electrospun polarized matrices: Bridging the gap in percussive spinal cord injuries (2007) Neuron Glia Biol, 3, p. 119 
504 |a Eriksen, T.H., Skovsen, E., Fojan, P., Release of antimicrobial peptides from electrospun nanofibres as a drug delivery system (2013) J. Biomed. Nanotechnol., 9, p. 492 
504 |a Lissarrague, M.H., Garate, H., Lamanna, M.E., D'Accorso, N.B., Goyanes, S.N., (2013) Medicinal Patches and Drug Nanoencapsulation: A Noninvasi Alternative Nanomedicine for Drug Delivery and Therapeutics Related, pp. 343-378. , edited by A. K. Mishra, Wiley-Scrivener, Beverly Chap. 12 
504 |a Zilberman, M., Elsner, J.J., Antibiotic-eluting medical devices for various applications (2008) J. Control Release, 130, p. 202 
504 |a Vorndran, E., Spohn, N., Nies, B., Röler, S., Storch, S., Gbureck, U., Mechanical properties and drug release behavior of bioactivated PMMA cements (2012) J. Biomater. Appl., 26, p. 581 
504 |a Fong, E.L.S., Watson, B.M., Kasper, F.K., Mikos, A.G., Building bridges: Leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs (2012) Adv. Mater., 24, p. 4995 
504 |a Brouwers, J., Brewster, M.E., Augustijns, P., Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J (2009) Pharm. Sci, 98, p. 2549 
504 |a Singh, A., Worku, Z.A., Van Den Mooter, G., Oral formulation strategies to improve solubility of poorly water-soluble drugs (2011) Expert Opin. Drug Deliv., 8, p. 1361 
504 |a Yu, D.G., Branford-White, C., White, K., Li, X.L., Zhu, L.M., Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen (2010) AAPS PharmSciTech, 11, p. 809 
504 |a Lin, X., Tang, D., Du, H., Self-assembly and controlled release behaviour of the water-insoluble drug nifedipine from electrospun PCL-based polyurethane nanofibres (2013) J. Pharm. Pharmacol., 65, p. 673 
504 |a Reise, M., Wyrwa, R., Müller, U., Zylinski, M., Völpel, A., Schnabelrauch, M., Berg, A., Sigusch, B.W., Release of metronidazole from electrospun poly(llactide-co-d/l-lactide) fibers for local periodontitis treatment (2012) Dent. Mater., 28, p. 179 
504 |a Park, J., Lee, I., Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers (2011) J. Polym. Res., 18, p. 1287 
504 |a Bölgen, N., Vargel, I., Korkusuz, P., Menceloǧlu, Y.Z., Pişkin, E., Vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions (2007) J. Biomed. Mater. Res., 81, p. 530 
504 |a Natu, M.V., De Sousa, H.C., Gil, M.H., Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers (2010) Int. J. Pharm., 397, p. 50 
504 |a Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes (2002) Polymer, 43, p. 4403 
504 |a Luong-Van, E., Grondahl, L., Chua, K.N., Leong, K.W., Nurcombe, V., Cool, S.M., Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers (2006) Biomaterials, 27, p. 2042 
504 |a Kim, K., Luu, Y.K., Chang, C., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrouc, M., Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds (2004) J. Control Release, 98, p. 47 
504 |a Nie, H., Soh, B.W., Fu, Y.C., Wang, C.H., Threedimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery (2008) Biotechnol. Bioeng., 99, p. 223 
504 |a Schneider, A., Wang, X.Y., Kaplan, D.L., Garlick, J.A., Egles, C., Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing (2009) Acta Biomater, 5, p. 2570 
504 |a Tian, L., Prabhakaran, M.P., Ding, X., Kai, D., Ramakrishna, S., Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid-co-ϵ-caprolactone) nanofibers for sustained release in cardiac tissue engineering (2012) J. Mater. Sci., 47, p. 3272 
504 |a Sohrabi, A., Shaibani, P.M., Etayash, H., Kaur, K., Thundat, T., Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate)-nylon6 core/shell nanofibers (2013) Polymer, 54, p. 2699 
504 |a Huang, Z.M., He, C.L., Yang, A., Zhang, Y., Han, X.J., Yin, J., Wu, Q., Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning (2006) J. Biomed. Mater. Res., 77, p. 169 
506 |2 openaire  |e Política editorial 
520 3 |a Electrospinning is a versatile technique for generating a mat of continuous fibers with diameters from a few nanometers to several micrometers. The diversity of electrospinnable materials, and the unique features associated with electrospun fibers make this technique and its resultant structures attractive for applications in the biomedical field. This article presents an overview of this technique focusing on its application for tissue engineering. In particular, the advantages and disadvantages of using an electrospinning mat for biomedical applications are discussed. It reviews the different available electrospinning configurations, detailing how the different process variables and material types determine the obtained fibers characteristics. Then a description of how nanofiber based scaffolds offer great promise in the regeneration or function restoration of damaged or diseased bones, muscles or nervous tissue is reported. Different methods for incorporating active agents on nanofibers and controlling their release mechanisms are also reviewed. The review concludes with some personal perspectives on the future work to be done in order to include electrospinning technique in the industrial development of biomedical materials. © 2014 American Scientific Publishers.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 200220100100142, 20020100100350 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT2012-0717, PICT2012-1093 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, 11220110100370CO, 11220120100508CO 
536 |a Detalles de la financiación: The authors wish to thank Mr. Matias Barella, University of Buenos Aires, for the development of electrospinnig device installed in our group. Furthermore, the authors are also grateful for the financial support of the University of Buenos Aires (fellowship of L. Ribba and UBACyT Nos. 20020100100350 and 200220100100142), CONICET (fellowship of M. Parisi and 11220110100370CO and 11220120100508CO) and ANPCyT (PICT2012-1093 and PICT2012-0717). 
593 |a Departamento de Física, Facultad de Ciencias Exactas Y Naturales-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Departamento de Química Orgánica, Facultad de Ciencias Exactas Y Naturales-UBA, Ciudad Universitaria C1428 EHA, Ciudad Autónoma de Buenos Aires, Argentina 
690 1 0 |a BIOMEDICAL MATERIALS 
690 1 0 |a DRUG DELIVERY 
690 1 0 |a ELECTROSPINNING 
690 1 0 |a NANOFIBERS. 
690 1 0 |a OSSEOINTEGRATION 
690 1 0 |a SCAFFOLDS 
690 1 0 |a TISSUE ENGINEERING 
690 1 0 |a BIOMEDICAL ENGINEERING 
690 1 0 |a DRUG DELIVERY 
690 1 0 |a MEDICAL APPLICATIONS 
690 1 0 |a NANOFIBERS 
690 1 0 |a SCAFFOLDS 
690 1 0 |a SCAFFOLDS (BIOLOGY) 
690 1 0 |a SPINNING (FIBERS) 
690 1 0 |a TISSUE 
690 1 0 |a TISSUE ENGINEERING 
690 1 0 |a TISSUE REGENERATION 
690 1 0 |a BIOMEDICAL APPLICATIONS 
690 1 0 |a BIOMEDICAL FIELDS 
690 1 0 |a BIOMEDICAL MATERIAL 
690 1 0 |a ELECTROSPINNING TECHNIQUES 
690 1 0 |a ELECTROSPUN FIBERS 
690 1 0 |a INDUSTRIAL DEVELOPMENT 
690 1 0 |a OSSEOINTEGRATION 
690 1 0 |a PERSONAL PERSPECTIVE 
690 1 0 |a ELECTROSPINNING 
690 1 0 |a BONE PROSTHESIS 
690 1 0 |a NANOFIBER 
690 1 0 |a ANIMAL 
690 1 0 |a BLOOD VESSEL PROSTHESIS 
690 1 0 |a BONE PROSTHESIS 
690 1 0 |a BONE REGENERATION 
690 1 0 |a CHEMISTRY 
690 1 0 |a DEVICES 
690 1 0 |a ELECTROPLATING INDUSTRY 
690 1 0 |a EQUIPMENT DESIGN 
690 1 0 |a HUMAN 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PROCEDURES 
690 1 0 |a SYNTHESIS 
690 1 0 |a TISSUE ENGINEERING 
690 1 0 |a TISSUE SCAFFOLD 
690 1 0 |a ULTRASTRUCTURE 
690 1 0 |a ANIMALS 
690 1 0 |a BLOOD VESSEL PROSTHESIS 
690 1 0 |a BONE SUBSTITUTES 
690 1 0 |a ELECTROPLATING 
690 1 0 |a EQUIPMENT DESIGN 
690 1 0 |a HUMANS 
690 1 0 |a NANOFIBERS 
690 1 0 |a OSSEOINTEGRATION 
690 1 0 |a TISSUE ENGINEERING 
690 1 0 |a TISSUE SCAFFOLDS 
700 1 |a Parisi, M. 
700 1 |a D'Accorso, N.B. 
700 1 |a Goyanes, Silvia Nair 
773 0 |d American Scientific Publishers, 2014  |g v. 10  |h pp. 3508-3535  |k n. 12  |p J. Biomed. Nanotechnol.  |x 15507033  |t Journal of Biomedical Nanotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84931068523&doi=10.1166%2fjbn.2014.2046&partnerID=40&md5=94d8a897ae8bd633e68d59a58f0ca597  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1166/jbn.2014.2046  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15507033_v10_n12_p3508_Ribba  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15507033_v10_n12_p3508_Ribba  |y Registro en la Biblioteca Digital 
961 |a paper_15507033_v10_n12_p3508_Ribba  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 74982