Critical pairs of sequences of a mixed frame potential
The classical frame potential in a finite-dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the starting point of a series of new results in frame theory,...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Taylor and Francis Inc.
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06490caa a22007577a 4500 | ||
|---|---|---|---|
| 001 | PAPER-14211 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518204442.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84897502868 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a NFAOD | ||
| 100 | 1 | |a Carrizo, I. | |
| 245 | 1 | 0 | |a Critical pairs of sequences of a mixed frame potential |
| 260 | |b Taylor and Francis Inc. |c 2014 | ||
| 270 | 1 | 0 | |m Heineken, S.; Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS-CONICET, C1428EGA C.A.B.A, Buenos Aires, Argentina; email: sigrid.heineken@gmail.com |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Benedetto, J., Colella, D., Wavelet analysis of spectogram seizure chips (1995) Proc. SPIE Conf. on Wavelet Applications in Signal and Image Proceedings, pp. 512-521. , San Diego, CA, July | ||
| 504 | |a Benedetto, J., Fickus, M., Finite normalized tight frames (2003) Adv. Comput. Math., 18, pp. 357-385 | ||
| 504 | |a Casazza, P., Custom building finite frames (2004) Contemp. Math., Amer. Math. Soc., 345, pp. 61-86 | ||
| 504 | |a Casazza, P., Fickus, M., Kovacević, J., Leon, M., Tremain, J., (2006) A Physical Interpretation of Tight Frames, , Applied Numerical Harmonics and Analysis, Birkhäuser, Boston | ||
| 504 | |a Casazza, P., Fickus, M., Minimizing fusion frame potential (2009) Acta. Appl. Math., 107 (103), pp. 7-24 | ||
| 504 | |a Christensen, O., (2003) An Introduction to Frames and Riesz Basis, , Birkhäuser, Boston | ||
| 504 | |a Christensen, O., Eldar, Y., Generalized shift-invariant systems and frames for subspaces (2005) J. Fourier Anal. Appl., 11 (3), pp. 299-311 | ||
| 504 | |a Christensen, O., Powell, A.M., Xiao, X.C., A note on finite dual frame pairs (2012) Proc. Amer. Math. Soc., 140, pp. 3921-3930 | ||
| 504 | |a Daubechies, I., The wavelet transform, time-frequency localization and signal analysis (1990) IEEE Trans. Inform. Th., 36 (5), pp. 961-1005 | ||
| 504 | |a Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, Philadelphia | ||
| 504 | |a Duffin, R.J., Schaeffer, A.C., A class of nonharmonic Fourier series (1952) Trans. Amer. Math. Soc., 72, pp. 341-366 | ||
| 504 | |a Goyal, V., Kovacević, J., Kelner, J., Quantized frame expansions with erasures (2001) Appl. Comput. Harmon. Anal., 10, pp. 203-233 | ||
| 504 | |a Massey, P., Ruiz, M., Stojanoff, D., The structure of minimizers of the frame potential on fusion frames (2010) J. Fourier Anal. Appl., 16 (4), pp. 514-543 | ||
| 504 | |a Heil, C., Walnut, D., Continuous and discrete wavelet transforms (1989) SIAM Rev., 31, pp. 628-666 | ||
| 504 | |a Strohmer, T., Heath Jr., R., Grassmanian frames with applications to coding and communications (2003) Appl. Comput. Harmon. Anal., 14 (3), pp. 257-275 | ||
| 504 | |a Waldron, S., Generalized Welch bound equality sequences are tight frames (2003) IEEE Trans. Info. Th., 49 (9), pp. 2307-2309 | ||
| 520 | 3 | |a The classical frame potential in a finite-dimensional Hilbert space has been introduced by Benedetto and Fickus, who showed that all finite unit-norm tight frames can be characterized as the minimizers of this energy functional. This was the starting point of a series of new results in frame theory, related to finding tight frames with determined lengths. The frame potential has been studied in the traditional setting as well as in the finite-dimensional fusion frame context. In this work we introduce the concept of mixed frame potential, which generalizes the notion of the Benedetto-Fickus frame potential. We study properties of this new potential, and give the structure of its critical pairs of sequences on a suitable restricted domain. For a given sequence {m } m=1.. N in K, where K is or , we obtain necessary and sufficient conditions in order to have a dual pair of frames {f m m=1. N, {g m } m=1.. N such that f m, g m = m for all m = 1.. N. copy; 2014 Copyright Taylor & Francis Group, LLC. |l eng | |
| 536 | |a Detalles de la financiación: Seventh Framework Programme, PICT 2011-0436, PIEF-GA-2008-221090, UBACyT 2011-2014 | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica | ||
| 536 | |a Detalles de la financiación: Universidad Nacional de San Luis | ||
| 536 | |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas | ||
| 536 | |a Detalles de la financiación: S. Heineken acknowledges the support of the Intra-European Marie Curie Fellowship (FP7 project PIEF-GA-2008-221090), UBACyT 2011-2014 (UBA) and PICT 2011-0436 (ANPCyT). | ||
| 536 | |a Detalles de la financiación: I. Carrizo was supported by the EUCETIFA project of the University of Vienna, CONICET, Universidad Nacional de San Luis and the Technical University of Denmark. | ||
| 593 | |a NuHAG, Faculty of Mathematics, University of Vienna, Vienna, Austria | ||
| 593 | |a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS-CONICET, C1428EGA C.A.B.A, Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a DUAL FRAMES |
| 690 | 1 | 0 | |a FINITE FRAMES |
| 690 | 1 | 0 | |a FRAME POTENTIAL |
| 690 | 1 | 0 | |a LAGRANGE MULTIPLIERS |
| 690 | 1 | 0 | |a FUNCTIONAL ANALYSIS |
| 690 | 1 | 0 | |a MATHEMATICAL TECHNIQUES |
| 690 | 1 | 0 | |a DUAL FRAMES |
| 690 | 1 | 0 | |a ENERGY FUNCTIONALS |
| 690 | 1 | 0 | |a FINITE FRAMES |
| 690 | 1 | 0 | |a FRAME POTENTIAL |
| 690 | 1 | 0 | |a FRAME THEORY |
| 690 | 1 | 0 | |a FUSION FRAMES |
| 690 | 1 | 0 | |a NEW RESULTS |
| 690 | 1 | 0 | |a RESTRICTED-DOMAIN |
| 690 | 1 | 0 | |a LAGRANGE MULTIPLIERS |
| 700 | 1 | |a Heineken, S. | |
| 773 | 0 | |d Taylor and Francis Inc., 2014 |g v. 35 |h pp. 665-684 |k n. 6 |p Numer Funct Anal Optim |x 01630563 |w (AR-BaUEN)CENRE-6330 |t Numerical Functional Analysis and Optimization | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897502868&doi=10.1080%2f01630563.2013.837483&partnerID=40&md5=d275e6cfcad7c57fbe9182bbfc4d835a |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1080/01630563.2013.837483 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_01630563_v35_n6_p665_Carrizo |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01630563_v35_n6_p665_Carrizo |y Registro en la Biblioteca Digital |
| 961 | |a paper_01630563_v35_n6_p665_Carrizo |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 75164 | ||