Nonlinear excitation of polariton cavity modes in ZnO single nanocombs

Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Capeluto, María Gabriela
Otros Autores: Grinblat, G., Tirado, M., Comedi, David Mario, Bragas, Andrea Verónica
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Optical Society of American (OSA) 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10945caa a22010217a 4500
001 PAPER-14295
003 AR-BaUEN
005 20241223093828.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84896376897 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Capeluto, María Gabriela 
245 1 0 |a Nonlinear excitation of polariton cavity modes in ZnO single nanocombs 
260 |b Optical Society of American (OSA)  |c 2014 
504 |a Johnson, J.C., Yan, H., Yang, P., Saykally, R.J., Optical cavity effects in ZnO nanowire lasers and waveguides (2003) J. Phys. Chem. B, 107 (34), pp. 8816-8828 
504 |a Van Vugt, L.K., Rühle, S., Ravindran, P., Gerritsen, H.C., Kuipers, L., Vanmaekelbergh, D., Exciton polaritons confined in a ZnO nanowire cavity (2006) Phys. Rev. Lett., 97 (14), p. 147401 
504 |a Li, W., Gao, M., Zhang, X., Liu, D., Peng, L.-M., Xie, S., Microphotoluminesce study of exciton polaritons guided in ZnO nanorods (2009) Appl. Phys. Lett., 95 (17), p. 173109 
504 |a Li, H.Y., Rühle, S., Khedoe, R., Koenderink, A.F., Vanmaekelbergh, D., Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires (2009) Nano Lett., 9 (10), pp. 3515-3520 
504 |a Chen, S.L., Chen, W.M., Buyanova, I.A., Slowdown of light due to exciton-polariton propagation in ZnO (2011) Phys. Rev. B, 83 (24), p. 245212 
504 |a Sturm, C., Hilmer, H., Rheinländer, B., Schmidt-Grund, R., Grundmann, M., Cavity-photon dispersion in one-dimensional confined microresonator with an optically anisotropic cavity material (2011) Phys. Rev. B, 83 (20), p. 205301 
504 |a Das, A., Heo, J., Bayraktaroglu, A., Guo, W., Ng, T.K., Phillips, J., Ooi, B.S., Bhattacharya, P., Room temperature strong coupling effects from single ZnO nanowire microcavity (2012) Opt. Express, 20 (11), pp. 11830-11837 
504 |a Li, F., Orosz, L., Kamoun, O., Bouchoule, S., Brimont, C., Disseix, P., Guillet, T., Zuniga-Perez, J., Fabrication and characterization of a room-temperature ZnO polariton laser (2013) Appl. Phys. Lett., 102 (19), p. 191118 
504 |a Lu, T.C., Lai, Y.Y., Lan, Y.P., Huang, S.W., Chen, J.R., Wu, Y.C., Hsieh, W.F., Deng, H., Room temperature polariton lasing vs photon lasing in a ZnO-based hybrid microcavity (2012) Opt. Express, 20 (5), pp. 5530-5537 
504 |a Klingshirn, C.F., (2005) Semiconductor Optics, , Springer 
504 |a Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Yang, P., Room-temperature ultraviolet nanowire nanolasers (2001) Science, 292 (5523), pp. 1897-1899 
504 |a Vanmaekelbergh, D., Van Vugt, L.K., ZnO nanowire lasers (2011) Nanoscale, 3 (7), pp. 2783-2800 
504 |a Dai, J., Zeng, J.H., Lan, S., Wan, X., Tie, S.L., Competition between second harmonic generation and twophotoninduced luminescence in single, double and multiple ZnO nanorods (2013) Opt. Express, 21 (8), pp. 10025-10038 
504 |a Johnson, J.C., Yan, H., Schaller, R.D., Petersen, P.B., Yang, P., Saykally, R.J., Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires (2012) Nano Lett., 2 (4), pp. 279-283 
504 |a Das, S.K., Bock, M., O'Neill, C., Grunwald, R., Lee, K., Lee, H.W., Lee, S., Rotermund, F., Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses (2008) Appl. Phys. Lett., 93 (18), p. 181112 
504 |a Shi, S.L., Xu, S.J., Xu, Z.X., Roy, V.A.L., Che, C.M., Broadband second harmonic generation from ZnO nano-tetrapods (2011) Chem. Phys. Lett., 506 (4-6), pp. 226-229 
504 |a Jang, J.I., Park, S., Frazer, N.L., Ketterson, J.B., Lee, S., Roy, B.K., Cho, J., Strong P-band emission and third harmonic generation from ZnO nanorods (2012) Solid State Commun., 152 (14), pp. 1241-1243 
504 |a Chan, S.W., Barille, E., Nunzi, J.M., Tam, K.H., Leung, Y.H., Chan, W.K., Djurišiæ, A.B., Second harmonic generation in zinc oxide nanorods (2006) Appl. Phys. B, 84 (1-2), pp. 351-355 
504 |a Lu, X., Zhou, H., Salamo, G.J., Tian, Z.R., Xiao, M., Generation of exciton-polaritons in ZnO microcrystallines using second-harmonic generation (2012) New J. Phys., 14 (7), p. 073017 
504 |a Grinblat, G., Capeluto, M.G., Tirado, M., Comedi, D., Bragas, A.V., Two-photon photoluminescence from hierarchical ZnO nanostructures (2012) ECS Trans., 45 (5), pp. 67-72 
504 |a Vahala, K.J., Optical microcavities (2003) Nature, 424 (6950), pp. 839-846 
504 |a Ozgur, U., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Morkoc, H., A comprehensive review of ZnO materials and devices (2005) J. Appl. Phys., 98 (4), p. 041301 
504 |a Djurisiæ, A.B., Kwok, W.M., Leung, Y.H., Phillips, D.L., Chan, W.K., Stimulated emission in ZnO nanostructures: A time-resolved study (2005) J. Phys. Chem. B, 109 (41), pp. 19228-19233 
504 |a Djurisiæ, A.B., Leung, Y.H., Optical properties of ZnO nanostructures (2006) Small, 2 (8-9), pp. 944-961 
504 |a Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Yang, P., Room-temperature ultraviolet nanowire nanolasers (2001) Science, 292 (5523), pp. 1897-1899 
504 |a Grinblat, G., Capeluto, M.G., Tirado, M., Bragas, A.V., Comedi, D., Hierarchical ZnO nanostructures: Growth mechanisms and surface correlated photoluminescence (2012) Appl. Phys. Lett., 100 (23), p. 233116 
504 |a Phan, T.L., Sun, Y., Vincent, R., Structural characterization of CVD-grown ZnO nanocombs (2011) J. Korean Phys. Soc., 59 (1), pp. 60-64 
504 |a Zang, C.H., Liu, Y.C., Zhao, D.X., Zhang, J.Y., Shen, D.Z., The synthesis and optical properties of ZnO nanocombs (2010) J. Nanosci. Nanotechnol., 10 (4), pp. 2370-2374 
504 |a Hamby, D.W., Lucca, D.A., Klopfstein, D.J., Cantwell, G., Temperature dependent exciton photoluminescence of bulk ZnO (2003) J. Appl. Phys., 93 (6), pp. 3214-3217 
504 |a Lagois, J., Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface (1981) Phys. Rev. B, 23 (10), pp. 5511-5520 
504 |a Takagi, A., Nakamura, A., Yoshikaie, A., Yoshioka, S., Adachi, S., Chichibu, S.F., Sota, T., Signatures of.1-.5 mixed-mode polaritons in polarized reflectance spectra of ZnO (2012) J. Phys. Condens. Matter, 24 (41), p. 415801 
504 |a Jung, S.W., Park, W.I., Cheong, H.D., Yi, G.C., Jang, H.M., Hong, S., Joo, T., Time-resolved and timeintegrated photoluminescence in ZnO epilayers grown onAl2O3 (0001) by metalorganic vapor phase epitaxy (2002) Appl. Phys. Lett., 80 (11), p. 1924 
504 |a Dai, D.C., Xu, S.J., Shi, S.L., Xie, M.H., Che, C.M., Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature (2005) Opt. Lett., 30 (24), pp. 3377-3379 
504 |a Van Vugt, L.K., Piccione, B., Cho, C.H., Nukala, P., Agarwal, R., One-dimensional polaritons with sizetunable and enhanced coupling strengths in semiconductor nanowires (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (25), pp. 10050-10055 
504 |a Han, N.S., Shim, H.S., Lee, S., Park, S.M., Choi, M.Y., Song, J.K., Light-matter interaction and polarization of single ZnO nanowire lasers (2012) Phys. Chem. Chem. Phys., 14 (30), pp. 10556-10563 
504 |a Gao, M., Cheng, R., Li, W., Li, Y., Zhang, X., Xie, S., Directly probing the anisotropic optical emission of individual ZnO nanorods (2010) J. Phys. Chem. C, 114 (25), pp. 11081-11086 
504 |a Choppali, U., Gorman, B.P., Effect of annealing on room temperature photoluminescence of polymeric precursor derived ZnO thin films on sapphire substrates (2008) Opt. Mater., 31 (2), pp. 143-148 
504 |a Larciprete, M.C., Bertolotti, M., Second harmonic generation and related studies on ZnO films" (2013) Handbook of Zinc Oxide and Related Materials, Part II, pp. 141-166. , Zhe Chuan Feng eds. CRC Press 
506 |2 openaire  |e Política editorial 
520 3 |a Tunable second harmonic (SH) polaritons have been efficiently generated in ZnO nanocombs, when the material is excited close to half of the band-gap. The nonlinear signal couples to the nanocavity modes, and, as a result, Fabry-Pérot resonances with high Q factors of about 500 are detected. Due to the low effective volume of the confined modes, matterlight interaction is very much enhanced. This effect lowers the velocity of the SH polariton in the material by 50 times, and increases the SH confinement inside the nanocavity due to this higher refractive index. We also show that the SH phase-matching condition is achieved through LOphonon mediation. Finally, birrefringence of the crystal produces a strong SH intensity dependence on the input polarization, with a high polarization contrast, which could be used as a mechanism for light switching in the nanoscale. © 2014 Optical Society of America.  |l eng 
593 |a Laboratorio de Electrónica Cuántica, Depto. de Física, FCEyN, UBA, 1428 Buenos Aires, Argentina 
593 |a IFIBA-CONICET-UBA, 1428 Buenos Aires, Argentina 
593 |a Laboratorio de Física del Sólido, Depto. de Física, FACET, UNT, 4000 S.M. de Tucumán, Argentina 
593 |a CONICET, Argentina 
593 |a Laboratorio de Nanomateriales y de Propiedades Dieléctricas, Depto. de Física, FACET, UNT, 4000 S.M. de Tucumán, Argentina 
690 1 0 |a ENERGY GAP 
690 1 0 |a PHASE MATCHING 
690 1 0 |a PHONONS 
690 1 0 |a PHOTONS 
690 1 0 |a POLARIZATION 
690 1 0 |a Q FACTOR MEASUREMENT 
690 1 0 |a REFRACTIVE INDEX 
690 1 0 |a ZINC OXIDE 
690 1 0 |a EFFECTIVE VOLUME 
690 1 0 |a INPUT POLARIZATION 
690 1 0 |a INTENSITY DEPENDENCE 
690 1 0 |a NONLINEAR EXCITATION 
690 1 0 |a NONLINEAR SIGNALS 
690 1 0 |a PHASE MATCHING CONDITIONS 
690 1 0 |a POLARIZATION CONTRAST 
690 1 0 |a SECOND HARMONICS 
690 1 0 |a QUANTUM THEORY 
700 1 |a Grinblat, G. 
700 1 |a Tirado, M. 
700 1 |a Comedi, David Mario 
700 1 |a Bragas, Andrea Verónica 
773 0 |d Optical Society of American (OSA), 2014  |g v. 22  |h pp. 5341-5349  |k n. 5  |p Opt. Express  |x 10944087  |w (AR-BaUEN)CENRE-8983  |t Optics Express 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896376897&doi=10.1364%2fOE.22.005341&partnerID=40&md5=912bb913645de2b927798f61e4692334  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1364/OE.22.005341  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10944087_v22_n5_p5341_Capeluto  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10944087_v22_n5_p5341_Capeluto  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_10944087_v22_n5_p5341_Capeluto  |b paper  |c NP 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI