Atomistic simulation of soldering iron filled carbon nanotubes

The melting and soldering processes of two iron filled carbon nanotubes is explored by means of classical molecular dynamics, in order to develop an understanding of the underlying mechanisms that govern the dynamics of nano-soldering. Molten Fe flows from the open end of the two CNTs, leading to a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Munizaga, V.
Otros Autores: García, G., Bringa, E., Weissmann, M., Ramírez, R., Kiwi, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07426caa a22010937a 4500
001 PAPER-14739
003 AR-BaUEN
005 20230518204519.0
008 170725s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84903964374 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CMMSE 
100 1 |a Munizaga, V. 
245 1 0 |a Atomistic simulation of soldering iron filled carbon nanotubes 
260 |b Elsevier  |c 2014 
270 1 0 |m Kiwi, M.; Depto. de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile; email: m.kiwi.t@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Bachthold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294, p. 1317 
504 |a Derycke, V., Martel, R., Appenzeller, J., Avouris, P., (2001) Nanoletters, 1, p. 453 
504 |a Cao, Q., Hur, S.H., Zhu, Z.T., Sun, Y., Wang, C., Meitl, M.A., Shim, M., Rogers, J.A., (2006) Adv. Mat., 18, p. 304 
504 |a Deck, C.P., Vecchio, K., (2006) Carbon, 44, p. 267 
504 |a Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., Ajayan, P.M., (2003) J. Chem. Phys. B, 107, p. 12161 
504 |a Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y., (2008) Nanoletters, 8, p. 2082 
504 |a Ding, F., Bolton, K., Rosén, A., (2004) J. Phys. Chem. B, 108, p. 17369 
504 |a Banerjee, S., Naha, S., Puri, I.K., (2008) Appl. Phys. Lett., 92, p. 233121 
504 |a Rodríguez-Manzo, J.A., Tolvanen, A., Krasheninnikov, A.V., Nordlund, K., Demortière, A., Banhart, F., (2010) Nanoscale, 2, p. 901 
504 |a Winkler, A., Mühl, T., Menzel, S., Kozhuharova-Koseva, R., Hampel, S., Leonhardt, A., Büchner, B., (2006) J. Appl. Phys., 99, p. 104905 
504 |a Wolny, F., Weissker, U., Mühl, T., Leonhardt, A., Menzel, S., Winkler, A., Büchner, B., (2008) J. Appl. Phys., 104, p. 064908 
504 |a Wolny, F., Mühl, T., Weissker, U., Leonhardt, A., Wolff, U., Givord, D., Büchner, B., (2010) J. Appl. Phys., 108, p. 013908 
504 |a Wolny, F., Mühl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A., Büchner, B., (2010) Nanotechnology, 21, p. 435501 
504 |a Coh, S., Gannett, W., Zettl, A., Cohen, M.L., Louie, S.G., (2013) Phys. Rev. Lett., 110, p. 185901. , http://link.aps.org/doi/10.1103/PhysRevLett.110.185901 
504 |a Soldano, G., Mariscal, M.M., (2009) Nanotechnology, 20, p. 165705 
504 |a Misra, A., Daraio, C., (2008) Adv. Mat., 20, p. 1 
504 |a Kashiwase, Y., Ikeda, T., Oya, T., Ogino, T., (2008) Appl. Surface Sci., 254, p. 7897 
504 |a Cui, J., Yang, L., Zhou, L., Wang, Y., (2014) ACS Appl. Mater. Interfaces, 6, p. 2044 
504 |a Plimpton, S.J., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.gov 
504 |a Stuart, S.J., Tutein, A.B., Harrison, J.A., (2000) J. Chem. Phys., 112, p. 6472 
504 |a Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M., (2003) Phil. Mag., 83, p. 3977 
504 |a Johnson, R.A., (1964) Phys. Rev., 134, p. 1329 
504 |a Lee, B.-J., (2006) Acta Mater., 54, p. 701 
504 |a Bringa, E.M., Johnson, R.E., (2002) Phys. Rev. Lett., 88, p. 165501 
504 |a Luo, S.-N., Ahrens, T.J., Çaǧin, T., Strachan, A., Goddard, W.A., Swift, D.C., (2003) Phys. Rev. B, 68, p. 134206. , http://link.aps.org/doi/10.1103/PhysRevB.68.134206 
504 |a Lin, Z., Leveugle, E., Bringa, E.M., Zhigilei, L.V., (2010) Jour. Phys. Chem. C, 114, p. 5686 
504 |a Weingarten, N.S., Mattson, W.D., Rice, B.M., Appl, J., (2006) Phys., 106, p. 063524 
504 |a Mendelev, M.I., (1999) Physics B, 262, p. 40 
504 |a Nair, R.R., Wu, H.A., Jayaraman, P.N., Grigorieva, I., Geim, A.K., (2012) Science, 335, p. 442 
504 |a Jiang, Y.Y., Zhang, K., Yu, H.Q., He, Y.Z., Song, X.G., (2012) Eur. Phys. Lett., 97, p. 16002 
504 |a Sun, L., Krasheninnikov, A.V., Ahlgren, T., Nordlund, K., Banhart, F., (2008) Phys. Rev. Lett., 101, p. 156101 
504 |a Rodríguez-Manzo, J.A., Wang, M., Banhart, F., Bando, Y., Golberg, D., (2009) Adv. Mater., 21, p. 4477 
504 |a Illie, A., Crampin, S., Karlsson, L., Wilson, M., (2012) Nano Res., 5, p. 833 
520 3 |a The melting and soldering processes of two iron filled carbon nanotubes is explored by means of classical molecular dynamics, in order to develop an understanding of the underlying mechanisms that govern the dynamics of nano-soldering. Molten Fe flows from the open end of the two CNTs, leading to a liquid junction, and eventually to a solid contact. This soldering process is accompanied by partial or total healing of the carbon nanotubes, which after cooling and relaxation form just a single unit which encapsulates the iron, depending on the relative separation, diameters and axial offset of the nanotubes. This makes for a promising scenario for CNT soldering, repairing and healing, and a variety of different tools in the field of nanoelectronics. © 2014 Published by Elsevier B.V.  |l eng 
593 |a Facultad de Física, Universidad Católica de Chile, Casilla 306, Santiago 7820436, Chile 
593 |a Centro Para El Desarrollo de la Nanociencias y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago, Chile 
593 |a CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina 
593 |a Departamento de Física, Comisión Nacional de Energía Atómica, Avda. del Libertador 8250, (1429) Buenos Aires, Argentina 
593 |a Depto. de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile 
690 1 0 |a IRON FILLED CARBON NANOTUBES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a NANOTUBE SOLDERING 
690 1 0 |a STRUCTURE OPTIMIZATION 
690 1 0 |a IRON 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a REPAIR 
690 1 0 |a SOLDERING 
690 1 0 |a STRUCTURAL OPTIMIZATION 
690 1 0 |a IRON 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a REPAIR 
690 1 0 |a SOLDERING 
690 1 0 |a STRUCTURAL OPTIMIZATION 
690 1 0 |a YARN 
690 1 0 |a ATOMISTIC SIMULATIONS 
690 1 0 |a CLASSICAL MOLECULAR DYNAMICS 
690 1 0 |a FILLED CARBON NANOTUBES 
690 1 0 |a LIQUID JUNCTIONS 
690 1 0 |a SOLDERING PROCESS 
690 1 0 |a SOLID CONTACTS 
690 1 0 |a STRUCTURE OPTIMIZATION 
690 1 0 |a CARBON NANOTUBES 
690 1 0 |a CARBON NANOTUBES 
650 1 7 |2 spines  |a CARBON 
700 1 |a García, G. 
700 1 |a Bringa, E. 
700 1 |a Weissmann, M. 
700 1 |a Ramírez, R. 
700 1 |a Kiwi, M. 
773 0 |d Elsevier, 2014  |g v. 92  |h pp. 457-463  |x 09270256  |w (AR-BaUEN)CENRE-4273  |t Comput Mater Sci 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903964374&doi=10.1016%2fj.commatsci.2014.06.006&partnerID=40&md5=2bf1065f984bdc9b8a0025eb4880fc19  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.commatsci.2014.06.006  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09270256_v92_n_p457_Munizaga  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09270256_v92_n_p457_Munizaga  |y Registro en la Biblioteca Digital 
961 |a paper_09270256_v92_n_p457_Munizaga  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 75692