Atomistic simulation of soldering iron filled carbon nanotubes

The melting and soldering processes of two iron filled carbon nanotubes is explored by means of classical molecular dynamics, in order to develop an understanding of the underlying mechanisms that govern the dynamics of nano-soldering. Molten Fe flows from the open end of the two CNTs, leading to a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Munizaga, V.
Otros Autores: García, G., Bringa, E., Weissmann, M., Ramírez, R., Kiwi, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:The melting and soldering processes of two iron filled carbon nanotubes is explored by means of classical molecular dynamics, in order to develop an understanding of the underlying mechanisms that govern the dynamics of nano-soldering. Molten Fe flows from the open end of the two CNTs, leading to a liquid junction, and eventually to a solid contact. This soldering process is accompanied by partial or total healing of the carbon nanotubes, which after cooling and relaxation form just a single unit which encapsulates the iron, depending on the relative separation, diameters and axial offset of the nanotubes. This makes for a promising scenario for CNT soldering, repairing and healing, and a variety of different tools in the field of nanoelectronics. © 2014 Published by Elsevier B.V.
Bibliografía:Bachthold, A., Hadley, P., Nakanishi, T., Dekker, C., (2001) Science, 294, p. 1317
Derycke, V., Martel, R., Appenzeller, J., Avouris, P., (2001) Nanoletters, 1, p. 453
Cao, Q., Hur, S.H., Zhu, Z.T., Sun, Y., Wang, C., Meitl, M.A., Shim, M., Rogers, J.A., (2006) Adv. Mat., 18, p. 304
Deck, C.P., Vecchio, K., (2006) Carbon, 44, p. 267
Homma, Y., Kobayashi, Y., Ogino, T., Takagi, D., Ito, R., Jung, Y.J., Ajayan, P.M., (2003) J. Chem. Phys. B, 107, p. 12161
Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y., (2008) Nanoletters, 8, p. 2082
Ding, F., Bolton, K., Rosén, A., (2004) J. Phys. Chem. B, 108, p. 17369
Banerjee, S., Naha, S., Puri, I.K., (2008) Appl. Phys. Lett., 92, p. 233121
Rodríguez-Manzo, J.A., Tolvanen, A., Krasheninnikov, A.V., Nordlund, K., Demortière, A., Banhart, F., (2010) Nanoscale, 2, p. 901
Winkler, A., Mühl, T., Menzel, S., Kozhuharova-Koseva, R., Hampel, S., Leonhardt, A., Büchner, B., (2006) J. Appl. Phys., 99, p. 104905
Wolny, F., Weissker, U., Mühl, T., Leonhardt, A., Menzel, S., Winkler, A., Büchner, B., (2008) J. Appl. Phys., 104, p. 064908
Wolny, F., Mühl, T., Weissker, U., Leonhardt, A., Wolff, U., Givord, D., Büchner, B., (2010) J. Appl. Phys., 108, p. 013908
Wolny, F., Mühl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A., Büchner, B., (2010) Nanotechnology, 21, p. 435501
Coh, S., Gannett, W., Zettl, A., Cohen, M.L., Louie, S.G., (2013) Phys. Rev. Lett., 110, p. 185901. , http://link.aps.org/doi/10.1103/PhysRevLett.110.185901
Soldano, G., Mariscal, M.M., (2009) Nanotechnology, 20, p. 165705
Misra, A., Daraio, C., (2008) Adv. Mat., 20, p. 1
Kashiwase, Y., Ikeda, T., Oya, T., Ogino, T., (2008) Appl. Surface Sci., 254, p. 7897
Cui, J., Yang, L., Zhou, L., Wang, Y., (2014) ACS Appl. Mater. Interfaces, 6, p. 2044
Plimpton, S.J., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.gov
Stuart, S.J., Tutein, A.B., Harrison, J.A., (2000) J. Chem. Phys., 112, p. 6472
Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M., (2003) Phil. Mag., 83, p. 3977
Johnson, R.A., (1964) Phys. Rev., 134, p. 1329
Lee, B.-J., (2006) Acta Mater., 54, p. 701
Bringa, E.M., Johnson, R.E., (2002) Phys. Rev. Lett., 88, p. 165501
Luo, S.-N., Ahrens, T.J., Çaǧin, T., Strachan, A., Goddard, W.A., Swift, D.C., (2003) Phys. Rev. B, 68, p. 134206. , http://link.aps.org/doi/10.1103/PhysRevB.68.134206
Lin, Z., Leveugle, E., Bringa, E.M., Zhigilei, L.V., (2010) Jour. Phys. Chem. C, 114, p. 5686
Weingarten, N.S., Mattson, W.D., Rice, B.M., Appl, J., (2006) Phys., 106, p. 063524
Mendelev, M.I., (1999) Physics B, 262, p. 40
Nair, R.R., Wu, H.A., Jayaraman, P.N., Grigorieva, I., Geim, A.K., (2012) Science, 335, p. 442
Jiang, Y.Y., Zhang, K., Yu, H.Q., He, Y.Z., Song, X.G., (2012) Eur. Phys. Lett., 97, p. 16002
Sun, L., Krasheninnikov, A.V., Ahlgren, T., Nordlund, K., Banhart, F., (2008) Phys. Rev. Lett., 101, p. 156101
Rodríguez-Manzo, J.A., Wang, M., Banhart, F., Bando, Y., Golberg, D., (2009) Adv. Mater., 21, p. 4477
Illie, A., Crampin, S., Karlsson, L., Wilson, M., (2012) Nano Res., 5, p. 833
ISSN:09270256
DOI:10.1016/j.commatsci.2014.06.006